
HARD-DISK RECORDING AND EDITING OF DIGITAL AUDIO
James A. Moorer
Sonic Solutions

Hard-disk recording of digital audio has moved from the domain of
university research projects into the mainstream of commercial professional
audio. This paper attempts to define a vocabulary for discussing the
differences between different approaches to hard-disk recording, and to
categorize these approaches. In the process of so doing, a number of related
topics will be discussed. These include different techniques for applying
amplitude envelopes, various disk scheduling algorithms, an analysis
technique for disk scheduling algorithms, RAM buffering techniques and
constraints, and the subject of sound file systems as different from computer
file systems, the problem of hard-disk load and unload time, the possibility of
background processing, optical disks, and others.

WHITHER HARD-DISK EDITING?

In the days of manual editing, tape-based editing was essentially
random-access, since new material could be inserted at any position in the
tape. In film and sound-effects editing, this is still the case. The "trim-bin"
becomes the random-access storage and retrieval device: every different
sound (or picture) has a different hook in the trim bin (or around the room)
and the editor can swiftly retrieve any piece of sound and splice it into place.

With editing of all-digital tapes, generally we require the material to be
copied linearly from one tape to the other. This is especially critical for DAT
and other tapes that cannot tolerate splicing. The editor must proceed from
the beginning to the end in a strictly linear fashion. Since digital audio tape
can tolerate copying without generation loss, it is possible to assemble the data
in pieces, then assemble the pieces into the finished product. The problem
with this two-step approach is that it doubles the time required to complete a
p ro jec t .

With background load and unload (defined and discussed below), the
hard-disk editor combines the efficiency and random-access of trim-bin
editing with the advantages of digital media. It need not take any more of the
editor's time than that required to make the edits. Thus we see that the point of
the hard-disk editor is to allow the editor the flexibility and efficiency of
razor-blade editing with the advantages of digital audio. If the hard-disk editor
does not accomplish this, it is hard to imagine what the point of it would be.

TYPES OF HARD-DISKS

Hard-disks can be categorized by their size and their external electrical
interface. Sizes are 14", 8", 5.25", 3.5" and 2.5" at this time. Interfaces include
SMD, ESDI, SCSI, and others. These are distinguished by a number of features,
but the one we will mention here is the location of logical-to-physical sector
number mapping. With SMD and ESDI, the location of the sector is given in
physical terms: head number, cylinder number, and sector within the track.
This triplet (cylinder, head, sector) is called the physical sector address. This
means that the driver or the interface that is ex terna l to the disk must

prepare these numbers. This generally involves a translation from a l o g i c a l
sector number to a phys ical sector address. Logical sector numbers are
generally a contiguous set of integers from zero to the last used sector of the
drive. With SCSI drives, there is a built-in controller that includes logical-to-
physical sector number translation and some amount of buffering.

The manufacture of the recording surfaces of the disks is not perfect:
each disk comes from the manufacturer with a list of surface defects on that
disk. This means that it is not possible to write on every sector on the disk:
some sectors are not usable and must be avoided. The responsibility for doing
this is generally delegated to the same process that converts logical sector
numbers to physical sector addresses, since it is simple to skip a sector here
and there in this process. The point is, however, that contiguity in the domain
of logical addresses does not necessarily mean contiguity in the physical
addresses. In fact, with many SCSI drives, there is no way to find out what the
exact mapping is.

The point of the above discussion is to show that the designer of an
audio hard-disk recording system must first make a decision about what kind
of disk to use, and must then deal with the consequence of this decision. By
chosing a format like SCSI, the designer relinquishes the opportunity to do
fine disk scheduling based on knowledge of the characteristics of the disk,
such as was done in [1], since one never knows when the SCSI controller will
decide to skip a sector.

ABOUT EDITING

For the purpose of discussion, we may say that editing consists of
sequencing and overlapping segments of sound. Using the current industry
parlance, we will call the silence between sounds black (by analogy to the
world of video) or alternately, digital zero . This is not a sound that you can get
from a microphone: it must be produced artificially by setting all the samples
in a region to zero. It is an important concept, since it is customary to separate
cuts on a compact disk with black. Even the best vinyl records had some
amount of irreducible surface noise between the cuts.

In general, a sound is either placed next to another sound, or next to
black. In either case, some amount of gain control is necessary to prevent
clicks and pops at splice points. For the purpose of this discussion, we will say
that every edit must have a fade of some kind associated with it. This may be a
fade-in or a fade-out, when the sound is surrounded by black, or may be a
cross-fade when two sounds are adjacent and overlapping. Note that a fade of
zero duration can be termed a but t -cut , by analogy to a butt-joint in
c a r p e n t r y .

Additionally, we may say that one t r ims an edit point, meaning that
more or less of one of the sounds is used, or we can do a slide edit in which the
relative synchronization of two adjacent sounds is maintained while more of
one sound is taken, and the same amount less of the other sound is taken. Let us
just add here that in our experience in the field, most of the time in editing is
taken trimming edit points to produce the final results.

The record of a sequence of edits can be called an edit decision list, or
more simply, an edit list. When we listen to part or all of our edited sound, we
can be said to audi t ion the edit list. When we audition the sound, the hard-disk
system must per form the edit list. That is, it must synthesize, in one way or
another, the sound specified by the editors instructions.

IMPLEMENTATION OF FADES

Once an editing decision is made, the designer of a hard-disk editor must
decide how to perform the fade. There are several ways of doing this that are
currently in use. We will attempt to describe some of them:

The simplest one might be called the memoryless fade. This is where the
fade is done once, generally with a physical slider in real-time as the sound is
played, and the resulting audio is recorded on another device. We call it
"memoryless" because the only way to trim the edit or the fade is to do it over
a g a i n .

The next kind we might term a precomputed fade. Here, the edit list is
scanned, and all fades are noted. The sounds for each of the edits is read into
memory (typically dynamic RAM), and the host computer applies the fade
(that is, the gain control) to the sounds that are present during the fade. When
the edit list is performed (i.e., played), the audio stream is switched from a
direct copy of the data on the hard disk to the audio data in memory that has
the fade applied to it. After the fade is completed, one switches back to the
direct disk data. This technique was reported in [2].

The most popular kind, as judged from its presence in the commercial
marketplace, is the prestored fade. This is similar to the precomputed fade, but
the computed fade is then written back onto the hard disk. To perform the edit
then simply requires switching from the data on one part of the disk to
another part of the disk, since the faded sounds are already present. This was
used in [3].

The last kind we will discuss here might be termed a recons t ruc t ion
fade . In this case, the fade is computed in real time, so the original, direct disk
data is forwarded to some kind of digital signal processing device (DSP) that
calculates the gain for each sample of the incomming signals and multiplies
the gains times the signals and sums the resulting signals being faded in and
faded out.

It is helpful to compare these different choices in terms of the system
resources and the effects on the operator. The memoryless fade is useful for
tape-based editors, since the operation is then applied in real-time as the
material is copied from the source tape(s) to the destination tape. The problem
is, of course, to make a single change in an edit at the beginning of the tape
often involves copying the entire tape, which can be a time-consuming
process .

With the precomputed fade, it is possible that only a certain number of
fades can be stored in the memory, and thus you have hard, physical limits to
the amount of fades that can be done this way before it is necessary to copy the

sound off to secondary storage (digital audio tape of some kind). It also
requires a sizeable memory buffer that may or may not be already included in
the system.

The prestored fade places minimal requirements on system memory, and
so can be done with quite small systems. It is not possible, however, to do a
real-time edit with prestored fades, since the fade must be computed in
advance and stored back on the disk. Furthermore, it takes roughly the same
amount of time to compute and store the edit as it will take to play it. Thus a 90-
second fade will take 90 seconds (or more) to precompute. If you trim the edit
point by even one sample, you must wait another 90 seconds to hear the
results. Additionally, each edit made occupies space on the audio disk. If it is
necessary to keep several versions of a particular edit around for the client,
each version occupies space.

The reconstruction fade overcomes the previous objections by being
synthesized in real time. They are essentially instantanious, since the
computation is done while the sound is being played and not before. It is also
possible to make a real-time fade, since it just involves the manipulation of the
gain that is being applied. It does, however, place greater demands on the
system. For instance, for the duration of a cross fade, both the sounds being
faded out and the sounds being faded in have to be transferred from the disk.
This effectively requires twice the data rate from the disk for the duration of
the fade. In certain configurations, this may not be available. It requires what
might be seen as 100% excess capacity. Indeed, it might be a difficult decision
as to whether a system designer should implement an N-channel system with
reconstruction fades, or a system with twice the number of channels with one
of the other fade types. The other requirement for reconstruction fades is
some kind of DSP capability, either in hard-wired form or in programmable
signal processors.

The other problem with reconstruction fades is that only one fade can
be occuring at a time. Although it is a rare thing to make an edit in the middle
of another edit, it still does occur. In a system with reconstruction fades, the
sound must be re-recorded onto the disk before another edit can be made that
overlaps a previous edit. One can argue that this simply makes explicit a
process that was implicit in the case of a prestored fade.

Probably the best method would be to combine reconstruction fades
with prestored fades. We could introduce the concept of f reezing a fade, which
would mean playing it through and saving it back on the disk. Presumably,
then, one could also t haw a fade for reediting. The only problem is that the
edits can only be undone in the order that they were made. If you freeze an
edit, then do another edit on top of it, it is meaningless to think of changing
the first edit without entirely undoing the second edit. In general, once you
start putting edits on top of edits (that is, putting a splice point in the middle of
the fade portion of a previous edit), you lose the ability to trim the earlier edits
i n d e p e n d e n t l y .

We must also ask about what functions are useful for fades. The most
popular fade in the commercially available hard-disk editors is the linear fade.
When used as a cross-fade, this is what we will call a gain-balanced fade. This
refers to the face that if the signals being cross faded are identical, then a
gain-balanced fade results in no change in amplitude of the signal over the

duration of the fade. The condition for a fade being gain-balanced is that the
fade-in is simply one minus the fade-out.

Note that on some systems, one does not do cross-fades, but instead must
juxtapose a signal being faded in on one audio stream with a signal being faded
out on another audio stream with no automated way of assuring that they
occur at the same time. This is rather unfortunate. Most editors consider a
cross-fade to a fundamental editing entity, perhaps from an older way of doing
things (i .e., manually splicing tape together). There is no reason that
computer programmers can't allow editors to work this way.

If the material being spliced together is different (or more precisely, if
it is statistically uncorrelated), then the gain-balanced fade does not produce
uniform loudness over the duration of the splice. In this case, an e n e r g y -
ba lanced fade should be used. This kind maintains a constant energy across
the fade. This is especially important when editing together applause. Editors
tend to use long fades with applause, and any dip in the loudness during the
fade becomes quite apparent.

Needless to say, in musical material, there are all degrees in between
perfectly correlated (i .e. , identical) and uncorrelated sounds, so that all
degrees between gain-balanced and energy-balanced need to be provided.

DISK SCHEDULING

Given an edit list that is to be performed, how should we transfer the
sound into the buffer memory? The simplest method is just to transfer the
sectors on demand. That is, each sector is transfered, in the order that it is to be
performed, into the buffer memory somewhat before it is to sound. Since we
are generally working in at least stereo, and possible in multi-channel audio,
this is not strictly possible: the disk only transfers one data stream at a time,
yet both left and right channels must be presented simultaneously. Many
systems solve this problem by interleaving 2 or more channels on the disk.
That is to say that in any given sector, the first sample goes to channel 1, the
second sample to channel 2, and so on. This has the positive side effect of
requiring the minimum disk bandwidth (and consequently the least expensive
hardware). It does not allow, however, one channel to be slipped (shifted in
time) with respect to the other easily. In general, it is more flexible to store
each channel separately on the disk and then combine them before
auditioning, but this requires enough more bandwidth that it may not be
possible in some cases.

If we take a pure demand strategy, then we must face the possibility of
an end-to-end seek on the disk between any two transfers. There is a tradeoff
between how much data is read at each disk position and the ultimate
efficiency attainable. For instance, in many modern SCSI drives, the rotation
rate is 16.7 ms, and the end-to-end seek time is, say, 26 ms. This means that if
you transfer the amount of data stored on 1.56 tracks each time you seek, you
can achieve a 50% efficiency even with an end-to-end seek after e v e r y
transfer. On the average, the performance will be much better than this.

The ultimate data rate attainable will be bounded by the amount of data
on a single track, multiplied by the rotation rate. If we take the data on a track

to be about 30,000 bytes, we get 1.8 MBytes/second. Note that this is somewhat
lower than the published specifications (2.2 to 2.4 MBytes/second), but this is
the actual maximum data rate sustainable. The higher numbers appear not to
take sector overhead into account properly. At 48 kHz, 16-bit samples, that
yields 18.75 channels of data as the theoretical upper bound for the transfer
off a modern SCSI disk. Note that at this rate, even the 1.2 GByte disks would be
completely emptied in 11 minutes. It would be reasonable, say, to set the
transfer size at 2 tracks (a bit over 60k bytes). That would achieve somewhat
more than a 50% efficiency, and would allow more than 8 channels of audio to
be transferred off a standard SCSI drive in real time, with an end-to-end seek
after each and every transfer, and with every channel stored on a different,
discontiguous, file. At this rate, the 1.2 GByte disk would hold about 26 minutes
of 8-track material. This is a somewhat more respectable amount for a single
disk. One could imagine a system with 4 disks providing a reasonable amount of
space for editing.

The above analysis is a worst-case analysis, using some relatively simple
disk models. It is clear from the above discussion that there is a tradeoff
between the size of a single transfer and the maximum efficiency attainable in
the presence of end-to-end seeks. We will call the amount of data transferred
at a time to be a transfer unit, or T U . Needless to say, the use of larger and
larger TU size increases efficiency, but requires increasing amounts of buffer
memory as well. Figure 1 shows how the maximum efficiency attainable is
related to the total size of the buffer memory. This figure is intended to be
suggestive only, it is not intended to be exact.

The problem with larger and larger TU size is that storing and
transfering short bursts of sound becomes less and less efficient. With a TU of
2 tracks, each TU is about 2/3 of a second of monaural sound. This is already
larger than some kinds of edits, such as some sound effects (pistol shots, for
example), and single notes in musical sequences. The exact size of the TU is a
tradeoff between the desire for more and more efficiency in storage and
transfer, and the desire for dense editing of very short bits of sound. This
tradeoff has to be made based on the expected usage of the system.

In hard-disk editing, the entire edit list is always known before the play
is started. This is in contrast to the sampling-synthesizer model, where the
sequence of keys that will be depressed by the performer is not known
beforehand (unless the sequence has been pre-recorded). It then makes sense
to ask whether it helps us to use this information to determine the order in
which disk transfers should be initiated. As an example, let us say that we need
to transfer track 1 first, then we will need data from track 1000, and then last
we will need data from track 500. If we follow a strict demand-based strategy,
we would transfer them in the order they will be used (auditioned). For this
example, we would transfer track 0, followed by track 1000, followed by track
500. If sufficient buffer memory is available, however, it would clearly be
more efficient to transfer track 0, followed by track 500, followed by track
1000. Thus by looking one transfer ahead, we can see that reordering two of
the transfers results in an increase in efficiency. We might imagine, then,
that looking through the entire edit list, it should be possible to produce the
optimal order of doing the transfers. Indeed, this is possible. This is the
approach taken in [1]. There is a tradeoff between the ultimate efficiency
achievable and the amount of buffer memory that is available. It would not be
possible to perform the example noted above without having memory available

to hold the data from track 500 while the data from track 1000 was being
audi t ioned.

In general, it is neither efficient nor desirable to look through the
entire edit list. Often the calculation required to produce an exactly optimal
schedule is prohibitive. We may then optimise a lesser problem, which would
be to look N transfers ahead. We might call this the optimisation horizon. The
point of doing this optimisation is either to transfer more channels of data, or
to be able to use a lesser amount of buffer memory. Otherwise, there is no point
at all. Straight demand schedule may be perfectly adequate for many
appl ica t ions .

To do any optimisation at all, we must have some idea of how much time
it takes to do a seek. We will assume that the seek time depends only on the
number of cylinders, and not on exactly which cylinder we start on. A typical
seek curve is shown in as the middle curve in Figure 2. Physically, you can
think of the head accelerating to some maximum speed, coasting at that speed,
then decelerating. The straight line at the origin would be achieved if the
acceleration were instantaneous, so that the head simply coasts to its
destination and stops abruptly. The lower curve is a parabola, which
represents constant acceleration followed by constant deceleration with no
coasting. The actual curve lies above both of these. It should be clear from this
discussion that it is more efficient to do a long seek than a short one, since the
time it takes to accelerate is significant for a short seek and becomes less
significant for a long seek.

The following discussion and observation is due to Mont-Reynaud [4].
The key point is that the curve is convex. From this property alone, and by use
of the triangle inequality, we can derive a bound for a sequence of seeks, and
we can also derive the worst case performance. To derive this bound, we will
assume that there are a sequence of N seeks of length dj. Let D be the total
distance spanned (= sum dj) .

S(D) < N S(D/N)

This says that it is always faster to seek from one end of the disk to the
other than it is to make N stops along the way. This may seem obvious, but it is
only a consequence of the convexity of the curve and of the non-zero
acceleration time. The point of this is that the worst-case pattern for a
sequence of seeks that span the entire disk is attained when all the seeks are of
equal length. We now have a basis for comparing strategies. Suppose, for
instance, that we needed to decide between a strategy that did the transfers in
order, then did a single seek back to cylinder 0. We might want to compare this
to one that did half the transfers in order, then the other half in reverse
order. We might call these the r e w i n d strategy versus the b a c k - a n d - f o r t h
strategy. Since the worst case is achieved for a series of N seeks of equal
length, we can note that the back-and-forth strategy actually achieves the
worst-case bound, and consequently the rewind strategy with its one long seek
cannot achieve the worst-case bound, and must be faster. We can then bound
any sequence of N transfers by the worst-case bound, which would be for N
equal-length seeks across the disk.

Let us now repeat the above discussion of efficiency. We noted that 50%
efficiency could be achieved by making the TU transfer time equal to the end-

to-end seek time. If our event horizon is N transfers, then the equivalent
statement would be that the 50% efficiency point could be reached by making
the TU transfer time equal to the time required to seek (1/N) of the way across
the disk. This is clearly a much smaller number (but not quite (1/N) smaller).
Thus by the above argument, a TU consisting of, say, two tracks of data
(somewhat over 60k Bytes) with an event horizon of only 4 transfers could
achieve well over 8 channels of throughput. In fact, the number comes out to
be about 14 channels of sustained audio transfer.

Note that in the above discussion, we have not taken rotational latency
into account at all. Since SCSI disks do not generally allow you to know the
rotational position of the disk, we must assume that the disk is always in the
worst position. This simply adds one rotation to each seek (in the worst case).
This reduces the above number of 14 channels down to about 12 channels of
continuous transfer.

If you have the freedom to spread the file system across two separate
disks, then a wonderful optimisation occurs [5]. The effect of seek latency can
be totaly eliminated. If you make the TU transfer time to be greater than or
equal to the maximum end-to-end seek time, then you can always arrange to be
doing a seek on one drive while transferring from the other. This effectively
allows you to transfer at the maximum disk rate (1.8 MBytes/second) all the
time. The only problem with this scheme is a maintenance problem: the
reliability of the system is now the produc t of the reliabilities of the two disks
separately, and that if one of the disks goes down, the entire system is down. In
each disk has a separate file system, then only the material on that disk is lost
in case of a failure.

Since we have shown a way to guarantee 12 channels of transfer off a
commonly-available SCSI disk, one might wonder what we should do with all
this excess channel capacity. Clearly we should use this capacity to address the
single most difficult problem with hard-disk editing systems, and that is the
hard disk load/unload time. The problem is that to edit, say, one hour of
material, you must wait one hour (at least) to load up the hard disk, and when
you are done, one more hour to unload the disk. Since digital audio tape
recorders can only operate in real time and no faster, we are constrained to do
the load and unload in real time. Of course, there are computer-type storage
devices that can operate faster than real time, but these cannot be used as a
medium of exchange between studios or for CD mastering, since not enough
studios use these devices. They can be used within a single studio for backup
and archival purposes. It is only a short leap of imagination to arrive at the
conclusion that this excess channel capacity might be used for background
load and unload of the hard disk. This allows one to start work on one project
as soon as the first material for that project is on the disk. In fact, with two
digital audio tape machines, one could simultaneously load material, dump
material, and work on material all simultaneously.

As mentioned previously, it is a difficult design decision to say that the
system will be used for N-channel editing with simultaneous background load
and unload, rather than a 2N or 3N-channel editing system with no
simultaneous load and unload. Each system designed takes this tradeoff
d i f f e r e n t l y .

There is a limitation of 8 devices on a single SCSI bus. Since the host
itself takes up 1 slot, a maximum of 7 disks can be attached. We might say from
the above arguments that the channel capacity of a single SCSI bus is about 12
channels of audio. For larger scale multi-channel systems, multiple SCSI
busses must be used. This leads to an interesting problem of channel and disk
allocation. If we have, say, a 16-channel system, we will probably use 2 SCSI
busses. As one records new material, the data coming in on channels 1 to 8 will
go onto the disks on one SCSI bus and the data on channels 9 to 16 will go onto
the disks on the other SCSI bus. What happens, then, if the operator decides to
edit material onto all 16 channels that come entirely from the disks one one
particular SCSI bus? The channel capacity for a single SCSI bus will clearly be
exceeded and it will not be possible to perform the edit list. The only solution
for this is to duplicate some material on both SCSI busses. Since it is not
possible to tell beforehand which sounds the editor will choose, this has to be
done at the time the edit is requested. This is an annoying nuscience, but there
is no particularly good solution for this.

Again, if reconstruction editing is used, there will be momentary bursts
of additional channel capacity while overlapping material is fetched from the
disks.

BUT WHAT ABOUT OPTICAL DISKS?

The most popular optical disk in the world today by huge factors is the
compact disk. It is, however, not erasable. The most popular erasable optical
disk right now is the magneto-optical (M-O) drive. These are made by a
number of manufacturers. The problem with these devices is not so much
their long seek times, since we showed above that this can be entirely offset
by increasing the size of the buffer memory. The main problem is that the
writing process must be done in 3 passes: the erase pass, the write pass, and the
verify pass. Under certain circumstances, the erase pass can be largely
eliminated by keeping the unused portions of the disk erased so they are
always ready for use. This, of course, makes it impossible to implement a two-
stage deletion policy (such as is used in the Macintosh "trash-can" metaphor),
since any deleted file must be erased immediately so that it will be ready for
recording. The verify pass can not be eliminated, but it can be absorbed into
the write process. Several of the manufacturers are now working on one-pass
M-O writing which should be available in the next few years. Without this, the
M-O disk consumes virtually all the SCSI bandwidth just to write stereo audio.
This being the case, it can not even be done as a background process without
taking even longer, since it would interfere with foreground editing. Even as
an archival medium, it is not clear why one would not choose a DAT (or some
other helical-scan device) over an M-O disk, since it records and plays in real
time, it is readily available on the marketplace, and the medium is quite cost-
effective. In time, with one-pass writing, the M-O disk may well become the
preferred medium of exchange between studios, but at present, it does not
measure up to the requirements of modern digital audio recording.

We should point out here that there is one significant difference
between most optical disks and hard disks. That is that the optical disks often
use dual-mode head positioning. For instance, one commercial M-O disk uses a
galvanometer mirror for positioning below 100 tracks which is very fast, and
then the head/mirror assembly is moves, which is relatively slow. This

produces a non-convex seek curve. Thus other allocation techniques (such as
clustering) may be more crucial for these devices.

FILE SYSTEMS FOR AUDIO

One of the large decisions the designer of a hard-disk editing system
must make is what file system to use. The easiest choice is to use the file system
of the host computer. This is very convenient, since sound files may be
handled just like any other files on the disk, plus you get all the vendor's aids
for disk backup and scavanging. The problem is, of course, that the host
computer's file system is designed for normal computer activities, like word
processing and spread sheets, and is not tuned for the specific requirements of
audio.

What are the special requirements of audio? First and foremost is that
transfers tend to be large (11.52 MBytes per minute for stereo at 48 kHz), and
that they mus t be done in real time. Most operating systems are not set up for
this kind of access. As was noted above, the efficiency of transfer can be
greatly increased by making the TU size relatively large. There is no operating
system on the market that directly gives you the flexibility to choose the TU
size to be, say, two full tracks of data.

Unfortunately, it is even more complicated than that: not all files on the
sound disk are sound files. There is still the need for relatively small files. For
instance, it is not unreasonable to think of keeping edit lists on the sound disk
itself. Thus there must be at least two classes of sounds: the first class is
allocated in large units for real-time sound transfer, and the other class is
allocated, say, one sector at a time.

If you do not have the freedom to choose the TU size, then you are at the
mercy of the operating system to allocate the sound files. In this case,
checkerboarding of the disk quickly becomes a significant problem. This
sharply limits the number of channels that can be reliably played. Even with
the argument above that the modern hard disk can easily support 12 or more
channels of audio, this gets reduced to between 2 and 4 channels when a
computer operating system does the allocation.

Some hard-disk editing systems do not allow the user to see the
waveform. If it does allow the user to edit against the waveform, then some
further difficult decisions must be made. For instance, to view 1 minute of
stereo 48 kHz material would require reading 11.52 MBytes of data. It would
take more than 5 seconds just to transfer this from the disk, much less format
it for display. Consequently, it is important to compute and store certain
reductions of the signal for display purposes. It is reasonable to store a series
of reductions, starting, say, at 16x and going up to as high as 1 million times.
The display routines can then simply choose the highest level of reduction
that still fills the screen fully. At a reduction of 1 million times, one can view
an entire CD (1.3 GBytes of data) in the same time that it takes to view a single
cut, or to view 20 milliseconds of sound. The use of display reductions makes
the display time of the waveform roughly constant, regardless of the amount
of sound being viewed.

The reduction process can either be done during the recording, or out
of real time after the sound is recorded. To do it during the recording requires
some amount of DSP horsepower that may not be available in the less
expensive systems. It does, however, reduce productivity quite a bit if we
require a pass over the data, since this can usually not be done any faster than
real-time. Note that this is another reason to have the file system capable of
storing sector-allocated files as well, since some of the display reductions will
be quite short.

There are other reasons to compute reductions of the signal as well. For
instance, if one wants to play the sound at faster than real time (like 2x or 6x
forwards or backwards), then you must store filtered reductions of the signal,
since the bandwidth of the disk will be quickly exceeded trying to call all the
data off the disk.

The point of the above discussion is to point out that a sound file is
really a cluster of different files that carry different data. The operator, of
course, always wants to deal with it as a single file, so that when it is deleted,
all the reduced files and other information is deleted along with it. Likewise,
when recorded, all the other information should flow into existence along
with it. Generally, system designers have chosen to lump all this information
into a single, large, inhomogeneous file so that it can be treated as a single
entity. If the designer has the freedom to redesign the file system, then
certain optimisations can be made. For instance, the various reductions can be
interleaved on the disk so that they can all be written at record time in a
single transfer, and so that as the user zooms in and out in the waveform, head
motion is minimized. The file can still be presented to the editor as being a
single entity, even though it is really multiple files.

In audio editing, when a project is finished, one must archive the data
for the project so as to reclaim the disk space. Likewise, if some further work
must be done on the project, it is necessary to load it back on the disk. Note that
this differs a little bit from computer disk backup and restore, since with the
computer system, you generally back up either the entire disk, or maybe one
or two files. In the studio, the concept of the "project" is a bit better defined,
and can often even be associated with a specific work-order number. It is a bit
of management help for the computer to take on some of the burdon of
tracking a project through the system. If a list is maintained of which sounds
and edit lists are associated with a specific project, then it is a simple matter to
archive a project entirely, without affecting any of the other projects that are
on the disk. Similarly, it becomes simple to restore a project entirely at some
later date.

CONCLUSIONS

We have discussed most of the aspects of hard disk editing. Any such
system must include (1) a storage strategy, whether it is on a computer file
system or a special-purpose file system. The special-purpose system allows the
designer a number of optimisations that are generally not available on
standard computer file systems. (2) a transfer strategy, which orders the
sectors as they come off the disk. This can vary from something as simple as
taking them strictly in time order, to something as complex as examining the
entire edit list before the first transfer is made. Generally, some kind of

transfer horizon that looks N transfers into the future is adequate. (3) a fade,
crossfade, and other gain control. This may be done in real time as the edits are
performed, or they may be computed beforehand. Some combination of these
two strategies is probably the best. (4) Ancillary services, such as project
management, archiving, display reductions, and so on.

In general, there are ways of eliminating most of the disadvantages of
the non-removable medium (such as background load and unload), and the
gains in productivity availble by being able to try out many different
combinations in a relatively short time lead to an increase in efficiency in the
modern commercial music studio.

REFERENCES

[1] Abbott, Curtis W. "Efficient Editing of Digital Sound on Disk," JAES v32,
#6, p394 (1984)

[2] Ingebretsen, Robert B., Stockham, Thomas G., Jr. "Random-Access
Editing of Digital Audio," JAES v32, #3, p114 (1984)

[3] Freed, Adrian. "Recording, Mixing, and Signal Processing on a Personal
Computer," Proceedings of the AES 5th International Conference Music
and Technology, p158, 1987

[4] Bernard Mont-Reynaud, Private communication, 1990.

[5] Knuth, Donald C. "The Art of Computer Programming, Vol III", Addison-
Wesley, 1973

Figure 1 - This shows the increase in efficiency of transfer as the size of
buffer memory is increased. We assume that the TU size is allowed to grow as
well. This is meant to be suggestive, and that the exact numbers should not be
taken literally.

Figure 2 - A typical seek curve for a modern hard disk. It is bounded below by a
straight line, which represents the head moving at a fixed rate with instant
acceleration to that rate. It is also bounded below by a parabola, which
represents constant acceleration followed by constant deceleration (i .e. , no
coasting at all). The actual seek curve is slower than either of these bounds.
The important fact here is that the seek curve is convex and is thus subject to
the triangle inequality.

