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The Manifold Joys of Conformal Mapping: 
Applications to Digital Filtering in the 

Studio – 2nd Try 
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This is an edited version of a paper that appeared in the Journal of the 
Audio Engineering Society [1]. Many typos have been corrected, and 
some supplementary material has been added. It has also been combined 
with an IEEE article [2] that also involves conformal mapping. 

 
Abstract: 
Conformal mapping is a well-known technique for modifying the cut-off or resonant 
frequencies of filters. Conformal mapping is applied to the problem of digital filters for 
professional audio production. Methods are examined for computing the coefficients of 
presence filters, such as parametric equalizers with or without shelving, and of band-pass 
or band-reject filters. Formulas are given for the coefficients of these filters in terms of 
the specifications (center frequency, boost/cut, and so on), which are exact and relatively 
straightforward to compute. A new kind of shelving filter is introduced that is equiripple 
in the passbands and can have an arbitrarily narrow transition band (with increasing filter 
order). 
 
 
Introduction 
 
Every studio mixing desk has a filter section for each and every channel. These go from 
the simplest bass-treble controls to sophisticated parametric boost/cut filters. Also quite 
popular as “outboard” equipment are graphic equalizers and high-order band-stop and 
notch filters. With the coming of digital audio it seems certain that the mixing desks of 
the future will have to realize all these functions entirely in the digital domain. To realize 
some of the real advantages of digital control (precision and repeatability), the 
characteristics of such filters must be very well understood, and their design formulas 
must be exact and explicit. In this paper, we go over some of the most common studio 
filters (and some rather uncommon ones) and develop design equations for each of them. 
These equations will allow the implementer to calculate exactly the filter coefficients for 
the desired characteristics. 
 
A second running theme in the paper is conformal mapping. We use this mapping as a 
tool for decomposing the problem of filter design into individual stages of which each 
one is tractable. Since many of the readers will not be familiar with this technique, it is 
explored in a tutorial fashion (up to a point). 
 
I will use radian frequency in the digital domain, which is independent of the sampling 

rate. An angle θ  in the digital domain corresponds to the frequency 
π

θ
2sff = , where 
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sf  is the sampling frequency. In Table 1, we use normalized frequency, which differs by 
a factor of π2 . Normalized frequency is the same as frequency at a sampling rate of 
unity. 
 
I will use z to represent the unit advance operator in both the transformed and the 
untransformed filters. In the literature, the transformed domain will often have a new and 
different variable representing the unit advance. I am avoiding this proliferation of 
variables here because I am dealing with both the analog domain and the digital domain. 
All transfer functions in the analog domain will use the variable s to denote the 
differentiation operator, and the domain will be called the s-plane. Similarly, the digital -
domain will be called the z-plane. 
 
About Conformal Maps  
 
The maps that I will discuss are complex functions of a complex variable. They map a 
simply-connected domain (i.e., the complex plane) onto another simply-connected 
domain (also the complex plane) [4]. It has been known for some time that conformal 
mapping has applications in filtering. It has been used to map low-pass filters into high-
pass, band-pass, or band-stop filters in the analog domain [5]. It has been used to map 
analog filters into the digital domain [6]. It has been noted elsewhere [2, 3] that 
conformal maps can be used in the digital domain to map a prototype low-pass filter into 
a filter having any number of pass and stop bands. I will try to demonstrate here the use 
of conformal mapping applied to the problem of digital filter coefficient determination 
for professional digital audio usage (graphic and parametric equalizers, high-selectivity 
bandpass and bandstop filters, and others). 
 
A digital filter is represented mathematically as a rational function of negative powers of 
z, the unit advance operator. The presence of 1−z  indicates a one-sample delay in these 
formulas. The class of conformal maps that I will deal with in this paper are all rational 
functions of z. In fact, they could be considered filters in their own right, but this 
identification is not particularly useful. These rational functions are all what we call all-
pass filters, in that the magnitude of their frequency response is exactly unity. They 
represent pure phase distortion. All-pass filters have been used as colorless reverberators 
[7] and as phase equalization for other kinds of filters [8]. 
 
In general, a conformal map does not have to be an all-pass filter, but making it so 
provides one important advantage: the resulting frequency response will have the same as 
the original frequency response but with the frequency axis displaced, stretched or 
squashed, and possibly replicated. The all-pass filter when used as a conformal map maps 
points on the unit circle onto the unit circle. That is, each point on the unit circle in the 
untransformed domain will be mapped into one (or more) points on the unit circle in the 
transformed domain (if the all-pass is not degenerate). If the all-pass is first order (i.e., 
the numerator and denominator polynomials contain no greater powers of z than 0 or 1), 
then there will be exactly one image point for every untransformed point. If the all-pass is 
second order, there will be exactly two image points, and so on. If we imagine a filter 
with a certain cutoff frequency, applying a first-order conformal map to the filter will 
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produce a new filter with a different cutoff frequency. All properties relating to relative 
values of the magnitude of the filter, such as passband ripple or stopband ripple, will be 
unchanged. Properties relating to the frequency of the filter, such as transition width or 
locations of poles and zeros, will be altered in a predictable manner. 
 
The Littlest Conformal Map 
 
Skipping over the trivial conformal map, which is the identity map, the simplest mapping 
I will consider here is a bilinear all-pass transform: 
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This maps the complex variable 1z  onto the complex variable z. Clearly if a=0, the map 
is the identity and nothing is changed. This map is very important to digital filtering, 
since it maps points on the unit circle onto points on the unit circle, changing only 
angular position (frequencies). This means that if you have a digital filter with some 
cutoff or resonant frequency, you can produce a new digital filter with a different cutoff 
or resonant frequency by substituting the right side of (1) for every occurrence of z in the 
prototype filter. The new filter will be a rational function of 1z . We can see how this 
works by substituting φjez =1  and ρjez = . Thus φ  corresponds to transformed 
frequency and ρ  corresponds to the un-transformed frequency. After some manipulation, 
we obtain the relation between these two as follows: 
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This shows that the cutoff frequency of the original filter ρ  is moved to a new position 
φ . This equation can be solved for either φ  or ρ  so that a can be calculated given these 
two data. To invert the formula, for instance, so as to exchange the roles of ρ  and φ , we 
need only replace a with –a in (2a). To solve this in a general fashion for a, given φ  and 
ρ , involves solving the quadratic equation (2b) in a. The two roots will be reciprocal – 
one inside the unit circle and one outside. The inside root, of course, should be selected. 
 
The significance of this is that we need only figure out the filter we want once for a given 
frequency, then we can transform it ad naseum to any other frequency. With some extra 
computation, this calculation can be done along with the application of the filter to a set 
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of samples to give time-varying filters with a frequency response with very precise 
control1. 
 
To find out how the root locations of the prototype filter have changed, we just substitute 
for z in (1) the specific root as a complex number, then solve fo r 1z , which will be the 
image of the root in the transformed filter. Solving for 1z , we get the following relation: 
 

(3a) 1

1
1

1 1 −

−
−

−
+−

=
az

za
z  

 
and similarly, 
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This relation is identical in form to (1) with –a substituted for a. This should not be 
entirely surprising. This is just the inverse transform which would map a transformed 
filter back to its original form. This shows that we may invert (2) by exchanging ρ  and 
φ  and replacing a with –a. I will note without proof that it is straightforward to show [4] 
that the bilinear transforms form a group 2. 
 
As noted above, this map is interesting because it is easier to design some filters around 
particular frequencies rather than around an arbitrary frequency. This is clearly 
demonstrated in the case of the presence filter. 
 
The Digital Presence Filter 
 
This section is taken largely from McNally [9], except for our usage of the conformal 
map rather than the z-transform. 
 
A presence filter, as is commonly found on commercial mixing consoles, is a single 
second-order section with a pole pair and a zero pair. By adjusting the parameters of this 
filter, we can obtain a boost or a cut of any desired amount. Similarly, the bandwidth of 
the boost or cut may be freely adjusted. It is our task here to show how the coefficients of 
this filter may be computer from the specifications, which are boost/cut amount in dB, 
bandwidth, and center frequency. Figure 1 shows an example of the frequency response 
of a presence filter. A presence filter, for our purposes, is defined to have unity response 

                                                 
1 Conformal mapping provides a solution to one of the issues in time -varying filters, namely the calculation 
of the filter coefficients. The implementation of time-varying filters involves other problems as well. See 
[Moorer] for more details on the problem of time -varying filters. 

2 The general bilinear transform is 1
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z . We are only concerned with a special case of this 

transform. To force the transform to be an all-pass, a and d must be equal, and b and c must be equal. 
Furthermore, to normalize to unit amplitude, c must be one. 
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at 0 and π . In Figure 1a, we see the presence filter centered around the frequency 2π . 
In this case, the response is perfectly symmetric, and the bandedges −θ  and +θ  will not 
be independent, since −+ −= θπθ . In Figure 1b, the center frequency has been moved to 
ω  by use of the transformation shown in (1). The response is no longer symmetric, and 
the new bandedges −θ  and +θ  are related to the old bandedges by (2a) where ρ  is either 

−θ  or +θ . The transformation preserves the unit response at 0 and π . 
 
We may note here one important difference between the analog presence filter and the 
digital presence filter, and, in fact, between analog filters and digital filters of the same 
order in general. Whereas the response of the analog presence filter is symmetric when 
plotted on a log-frequency scale, the response of the digital presence filter is not. The 
reason why is quite simple: the magnitude-squared response of an analog filter is a ratio 
of polynomials in ω , the applied frequency. The magnitude-squared response of a digital 
filter is a ratio of polynomials in )cos(ω . For a given order, these cannot be equal. This is 
regardless of the method of calculating the coefficients. Digital filters designed by 
conformal mapping, z-transform, or any other method will share this property. It is a 
somewhat fortunate side effect, however, that at low frequencies (lower than about 1/6 of 
the sampling rate) or high Q (greater than about 4), the responses of analog and digital 
presence filters are substantially equal. At higher frequencies, there will be differences 
which may or may not be significant. 
 
The bandwidth of the digital presence filter needs some explanation. If we are boosting 
by some amount, then the response of the filter reaches a maximum at the resonant 
frequency and falls off both above and below the resonant frequency. The bandwidth is 
usually defined as the difference between the frequencies above and below the resonant 
frequency where the response falls to 3dB below the maximum value. It is analogously 
defined for a cut as for a boost. The problem comes when we specify a boost of less than 
3dB. We will adopt the convention (after McNally [9]) that when the boost or cut is less 
than 6 dB, the bandwidth will be defined by the frequency points where the gain falls by 
half the boost or cut amount in dB. For example, if we ask for a 4dB boost, then the 
bandwidth will be the difference between the frequencies where the gain reaches 2dB. 
 
The frequency 2π  is “magic” in many ways. In the case of the presence filter, the 
response is exactly symmetric about the center frequency, as shown in Figure 1. The 
pole-zero plot, also shown in Figure 1, is exactly symmetric about the j-axis. This yields 
the transfer function of the filter in a marvelously simple form: 
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For this to be stable, nα  and dα  should have magnitudes less than one. If dn αα = , then 
the response of the filter is identically one. If dα  is greater in magnitude than nα , then 
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the filter will boost (i.e., show a gain at resonance (= 2π ) greater than one). Otherwise, 
the filter will cut. 
 
Setting θjez = , the magnitude-squared response of the filter can be expressed as follows: 
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From either (4) or (5), we note that at 
2
π

θ =  this reduces to the following: 
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I will use A to denote the magnitude of the response of the filter at resonance. For any 
other frequency, I will use F to denote the magnitude of the response of the filter3. 
 
To design a presence filter, we are given A, the magnitude at resonance, F, the desired 
response at a given frequency, and θ , which is that frequency. By convention, θ  is taken 
to be the 3dB point (where 2AF = ), or the halfway point when A is of magnitude less 

than 6 dB (where AF = )4. Solving for nα  and dα  yields the following: 
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Since the response is perfectly symmetric around 2π , the bandwidth will be 22 πθ − . 

This completes the design of the prototype filter with a resonant frequency of 2π  and an 
arbitrary boost or cut amount, and an arbitrary bandwidth. It remains now only to 
transform this to the desired frequency. 
 
Replacing every occurrence of 1−z  in (4) with the right-hand side of (1), we obtain the 
following, transformed filter: 
 

                                                 
3 This follows the notation of McNally[1981]. 
4 I am being somewhat careless in switching between amplitude (A and F) in decibels versus linear scale. 
When A is small, we set F to one-half of A when expressed in dB. This is equivalent to setting F to the 
square-root of A. 
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To realize this, of course, we must make the first denominator term unity by dividing 
each coefficient by { })1()1( 22 aa d −++ α . 
 
We must now determine the value of a which maps the frequency 2π  into any desired 

center frequency ω . This may be done by substituting ωφ =  and 2
πρ =  into the 

inverse of (2). This yields the following: 
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For 2
πω = , the computed value of a will be zero, which is what we should expect. 

 
At this point, the resulting bandwidth is unknown. We must find a way to relate the 
transformed bandwidth with the un-transformed bandwidth. Although the response of the 
prototype filter is perfectly symmetric about 2π , the response of the transformed filter 
will be asymmetric about ω . This may be found, as before, by application of the inverse 
of (2). Let us define +θ  and −θ  as the high and low bandedges of the prototype filter, 
such that −+ −θθ  is the bandwidth of the untrans formed filter. These will be symmetric 
about 2π  so that −+ −= θπθ . Similarly, let us define +φ  and −φ  as the transformed 
bandedges, so that the transformed (i.e., desired) bandwid th is −+ −φφ . We can then 
compute the transformed bandwidth as follows: 
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This formula is derived by using (2) to compute )tan( +θ  and )tan( −θ , then combining 
them using the angle difference identity for tangents. This formula means that we do not 
have to know what the exact values of +φ  and −φ  will be beforehand: it is sufficient to 
know only their difference, which will is the desired (transformed) bandwidth of the 
resulting filter. From a and the desired bandwidth, we can calculate −θ , which allows us 
to compute the desired filter coefficients. We solve for −θ  by first defining the angle δ  
and the quantities T and M: 
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(11b) )tan( −+ −≡ φφT  
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The bandedge frequency may then be computed as follows: 
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Since the arcsine is a many-valued function, we may arbitrarily assign −θ  to the first 
quadrant then choose either arcsin()  or arcsin()−π  in (12) to yield a first-quadrant value 
of −θ . We may then substitute −θ  into (7) to compute nα  and dα  which completes the 
design of the filter. Appendix I shows a C-subroutine which performs this task. 
 
We note a number of differences between the filter computed by this method and the z-
transform method described by McNally [9]: 
 

• With conformal mapping, the frequency of the maximum boost/cut and the 
bandwidth are exactly determined, whatever their value. Since the z-transform 
method is an approximation rather than an exact calculation, there is some 
deviation. Table I shows the deviation in Q and frequency for a range of values. 

• For frequencies above about 1/6 of the sampling rate, the magnitude response of 
the filter designed by conformal mapping becomes noticeably skewed toward the 
lower frequencies, whereas the z-transform produces responses skewed towards 
higher frequencies. The responses are virtually identical at lower frequencies or 
higher values of Q. There is no way with second-order filters to achieve perfectly 
symmetric curves over all values of frequency. 

• Our method requires somewhat more compute time to determine the coefficients 
than the z-transform method. 

 
Neither this method nor the z-transform method produces ideal behavior when the center 
frequency of the filter approaches 2π , although the conformal map method still 
produces filters with exact parameters. The requirement that the magnitude of the filter 
go to zero at 2π  is somewhat over-constraining. Orfanidis [10] derives a presence filter 
that overcomes the problems at high frequencies. 
 
We might note parenthetically here that whereas center frequency and Q are sufficient to 
describe exactly the response of a second-order analog filter, these are insufficient to 
describe the digital filter. We might speculate as to what would be a better measure. For 
instance, rather than the frequency of the maximum boost or cut, we might specify the 
centroid on a log-frequency plot. This is not a particularly convenient number to 
calculate, but it expresses more precisely where the energy will be concentrated (or 
eliminated). Better yet would be a measure that is related more directly to our perception, 
but this is even less tractable. 
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Notch Filters  
 
Although the presence filter as defined above can be used to greatly attenuate, the 
definition of bandwidth does not quite match that used for notch filters. Generally, a 
notch filter is defined as having unity response at frequencies of zero and 2π , and a 
response of exactly zero at some other frequency. These are often used to eliminate, say, 
60 Hz hum from a recording. We may generalize this slightly by allowing the response to 
be non-zero, rather than exactly zero at the notch frequency. All the design equations 
above still apply, except that the definition of F is changed. With the presence filter, F is 
strictly dependent on the value of A. This presents in interesting problem when A is set to 
zero, since F also becomes zero. Instead, F is set to an absolute value of -3dB, unless, of 
course, A is greater than -6dB, where F may be set to A . Note that if we set A to zero, 

nα  also becomes zero. By this definition, the bandwidth refers to the point where the 
response is reduced from unity to -3dB. This definition of bandwidth produces 
significantly sharper filters (i.e., higher Q) than the definition used for presence filters. 
The Q  can be reduced by allowing A to be non-zero. To be prudent, A should be set to 
the highest value (i.e., least amount of cut) required to lower the offending signals to an 
acceptable level. Higher values of Q simply increase the response time of the filter 
without necessarily producing any further effects on the signal being attenuated. 
 
About High-Q Filters: 
 
This seems a good place to insert a comment about the use of high-Q filters in general. 
This comes up often with the use of notch filters to attenuate 60Hz hum. Of course, we 
all want to preserve the recording as faithfully as possible, so the tendency is to use very 
high-Q notch filters. There is nothing wrong with this in principle, but one must be aware 
of the consequences. A 60 Hz notch with a Q of 100 has a bandwidth of 0.6 Hz. This 
means that the transient (impulse) response is on the order of 1.7 seconds long. When a 
60 Hz tone is presented to this filter, it will take about 1.2 seconds for it to fall by 6dB, 
then 1.2 more seconds to fall by 6 more dB, and so on. Moreover, any non-constancy in 
the 60 Hz tone will cause it to be audible again, since it will take some time for the filter 
to adapt. For instance, if you edit a recording that has 60 Hz hum, then try to get rid of 
the hum with a notch filter, you will find that the hum re-appears at every edit point. This 
is because in editing the recording, you produce discontinuities in the hum, which is like 
forcing the filter to restart. The proper way to apply this kind of high-order filter is to 
have plenty of room at the beginning of the recording for it to get going (or, more 
precisely, for the transient response to die out) before the program material starts, and to 
do all the high-order filtering before editing the recording. It is generally not possible to 
eliminate all hum from a recording without introducing some audible artifacts. 
 
Digital Shelving Filters  
 
Following McNally [9], we may define the transfer function of a shelving filter as 
follows: 
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This formula can be derived by starting in the s-plane (“analog” plane) with a pole and a 
zero that are at the same angle but different radii ( nγ  and dγ ). (13) results from a bilinear 
transform of the s-plane onto the unit circle [6]. In our case, the exact transformation used 
was )1()1( 11 −− +−= zzs  which maps the normalized frequency s=j into 2π . 
 
From this, we can determine the gain at zero frequency ( 1=z ) and at the Nyquist rate 
( 1−=z ) as follows: 
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Thus we see that the filter of (13) is a low-shelving filter, i.e., it has a unit response at 
high frequencies, and a freely adjustable response at low frequencies. The behavior in 
between will be determined entirely by σ . Curiously, the only value of σ  that makes 
sense is 22=σ . This is the fastest transition between the response at low frequencies 
and the response at high frequencies that still has monotonic response. With this value of 
σ , the filter response will move smoothly between the high-frequency magnitude (14b) 
and the low-frequency magnitude (14a). Any smaller value of σ  will produce a 
noticeable peak in the response. Any larger value widens the transition at mid-
frequencies. Taking this value for σ , we can compute the magnitude response as 
follows: 
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To design the filter, we will take A to be the gain at zero frequency, and F to be the gain 
at 2π . As before, F will be taken to be the 3dB point of the filter in the case where A is 

greater than 2 (or less than ½). Otherwise AF = . We may now solve (14a) and (15) for 
nγ  and dγ , which yields these design relations: 
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By substituting the right side of (1) for each occurrence of z in (13), we can then 
transform the filter to any cutoff frequency ω . Again, (9) shows how to calculate a from 
the given bandedge frequency ω . 
 
As noted before, (13) is a low-shelving filter. If we wish a high-shelving filter (i.e., the 
response is unity at zero frequency), then all that is necessary is to substitute –z for every 
occurrence of z in (13). The net effect is to change the sign of the 1−z  term in the 
numerator and denominator. Note that this substitution should be done before applying 
the transformation of (1) to set the center frequency. This produces high-shelving filters 
with precise gain and center frequencies. This substitution is another very simple kind of 
conformal map. In general, substitution of –z for z will preduce a new filter with the 
frequency response reversed, i.e., low-pass filters become high-pass filters and vice-
versa. 
 
We have used 22=σ  in this derivation, since this produces the smoothest response. 
Smaller values may be used to produce “peaking” effects. The design proceeds as above, 
but then after nγ  and dγ ,  have been calculated, any desired value of σ  may be used in 
(13). 
 
Figure 2 shows the response (untransformed) of a number of digital shelving filters. For 
all the curves except the 5dB boost and the 5dB cut, the response at 2π  differs from the 
response at zero by 3dB. At the 5dB points, the response differs by 2.5dB. For 20dB 
boost, the values of A and F are pointed out by dotted lines. 
 
Appendix II shows a C program to perform the calculations described above. 
 
Higher-Order Filters  
 
So far, I have discussed only second-order filters. Higher-order filters are generally used 
in professiona l audio production on an occasional basis. High-order bandpass or 
bandreject filters are sometimes used to try to separate the desired sound from some 
annoying background noise. 
 
I will discuss only one general form of high-order filter, and that is one derived from a 
particular conformal map. This form includes as a special case the elliptic low-pass filter 
as described in Gold and Rader [6] and implemented in Gray and Markel [11]. It also 
includes new forms of filters that we will call the elliptic shelving and presence filters. 
These forms feature equiripple behavior at all frequencies and independent control over 
the gains of pass and stop bands and transition widths. All these filters may be derived 
from a single model using conformal mapping. 
 
At this point, I must apologize to the reader. I am no longer able to keep the level to an 
introductory or tutorial level. To understand fully the remainder of the paper, the reader 
would have to know something more about conformal mapping and elliptic functions 
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than I can offer here. The references by Neville [12] and Cayley [13] are helpful, 
although any number of textbooks contain similar information. 
 
Conformal mapping is useful in high-order filters because generating filter coefficients 
for high-order filters is difficult. With first- and second-order filters, we can often solve 
the transfer functions explicitly to obtain closed-form expressions for the coefficients, as 
was done for (4) and (13). For higher-order filters, the design requires the solution of 
systems of simultaneous nonlinear equations and do not yield simple, closed-form 
solutions except in certain very special cases. With conformal mapping, we can often 
give a method, if not a closed-form solution, for determining the filter coefficients with 
great confidence and accuracy. 
 
Taking this argument to its logical extreme, the approach we will use here is to design, in 
the z-plane, a filter with one zero and one pole that has the required high and low ripple, 
but unconstrained transition width. Then, by conformal mapping, we will produce a 
higher-order filter with the same characteristics but increasingly narrow transition width 
until the desired width is obtained. The resulting filter will have identical pass and stop-
band behavior as the prototype first-order filter. 
 
The Elliptic Plane  
 
Let us start with a theoretical infinite-order filter with a regular 2-dimensional array of 
poles and zeros shown in Figure 3. Since this array extends indefinitely in all directions, 
either of the two vertical lines shown is an axis of symmetry. In fact, between any pair of 
columns of poles, or pair of columns of zeros lies an axis of symmetry. It is clear, then, 
by inspection, that the magnitude of the (infinite-order) rational function represented by 
this pole-zero array is equiripple along these axes of symmetry. It cannot be otherwise. 
To see this, all that is necessary is to imagine a ripple inspector sitting on one of the roots. 
The inspector gazes about and sees some ripple. The inspector is then blindfolded, 
snatched up, and placed on any other root of the same type (pole or zero) and the 
blindfold is removed. No matter which way the inspector gazes, all that can be seen is the 
identical array of roots. Consequently, the waves of ripple must appear absolutely 
identical from the point of view of one peak to the other. Consequently, the ripple must 
be identical everywhere in all rows and columns off to infinity in every direction. The 
values along the line between the columns of zeros will be different from the values 
along the line between the columns of poles, but each will be exactly equiripple. 
Although this is not a realizable transfer function in its own right, it does posses the 
equiripple property by inspection. I will call this the u-plane. 
 
The place where conformal mapping comes in is that any rectangle in this infinite array 
(providing its edges fall along axes of symmetry) may be mapped onto the upper half-
plane by use of the inverse Jacobian elliptic function )|(1 kusn− . That is, the finite area 
represented by a rectangle in the u-plane may be mapped onto the infinite area of the s-
plane, which in turn may be mapped into the unit circle, thus completing our filter design. 
This rectangle in the u-plane may be scaled to any size or rotated by any multiple of 90º. 
The important constraint, as noted above, is that the edges of the rectangle must fall along 
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the axes of symmetry of the pole-zero array. This is because the Riemann-Schwartz 
symmetry principle (See Nehari [4], Chapter V, Section 5) forces this to be so. If we map 
some other rectangle, the net effect will be that the edges of the rectangle we choose will 
automatically become axes of symmetry. That is, the poles and zeros in the u-plane won’t 
be where we think they were. It will realize an equiripple transfer function with a regular 
array of poles and zeros symmetrically placed around whatever rectangle you specify. 
These poles and zeros will be the original ones as shown in Figure 3 but reflected and 
overlapped by the new axes of symmetry5. Another way to look at it is to think that the 
rectangle we map will be extended forever in each dimension by reflection (that is, by 
“flopping” the rectangle over each edge again and again). Each extended rectangle will 
contain the exact same pole-zero configuration, or its reflection. A third way of looking at 
this property is to say that although we map a rectangle from the u-plane to the s-plane, 
we cannot know which of the infinite array of rectangles will be mapped. Consequently, 
they must contain the same pole-zero combination, which will be the superposition of all 
the reflected and extended rectangles over the u plane. 
 
The mapping we will make is to map a segment of the vertical line between the poles into 
the low-frequency band, and a segment of the vertical line between the zeros into the 
high-frequency band. The upper-half rectangle will represent the upper-half s-plane. The 
upper and lower edges of the rectangle must fall exactly between two pole-zero rows (by 
the symmetry principle) and will represent the transition band between the low-frequency 
response and the high-frequency response. We may adjust the height of the rectangle to 
enclose any number of pole-zero pairs. This will have the effect of narrowing the 
transition band. 
 
Making the Prototype Filter 
 
Note that the pole-zero array of Figure 3 is entirely determined by nu , du , and the 
vertical spacing of the pole-zero rows. If we can determine these parameters to give the 
desired values of high and low-frequency ripple, then the design can be solved. My 
approach, as mentioned above, is to reduce the problem to one that can be solved exactly 
in closed form, then progressively extended in aq manner that preserves the desired low- 
and high-frequency ripple but progressively narrows the transition band to the desired 
range. I do this by making a mapping rectangle that encloses only one pole and one zero. 
The pole and zero will then lie along the real axis. Figure 4 shows this mapping process. 
The points nu  and du  (Figure 4c) will be mapped successively into nσ  and dσ  (Figure 
4b), and then into nr  and dr  (Figure 4a). I then choose nr  and dr  to produce the desired 
pass- and stop-band ripple. To complete the process, I expand the mapping rectangle to 
include more pole-zero pairs, thus increasing the order of the resulting filter and reducing 
the transition width to the desired neighborhood. Since nu  and du  are held constant 
during this expansion, the low- and high-frequency ripple amounts will remain constant. 
 
                                                 
5 This property appears to be forgotten from time to time. Storer [1957] refers to a paper by Mattai [1952] 
where the property is routinely ignored. The technique of Mattai does not work, except in some very 
restricted examples. 
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To compute nr  and dr , I first define A, B, C, and D to be the magnitude of the response 
of a 1-pole, 1-zero digital filter at the frequencies 0, 2π  (the end of the low-frequency 
band and the beginning of the transition band), θ  (an unknown representing the end of 
the transition band), and p. These are the quantities that the user specifies. As an 
example, to make a shelving filter, we might specify that 1=A , and that  BA  represents 
a .1-dB low band ripple. Similarly, we might specify that 1.0=D  giving a 10-dB high-
frequency cut and that DC  represents a .1 dB high band ripple. The low and high band 
ripple do not have to be the same. Since the prototype filter has only one real pole and 
one real zero, the response must be monotonic. The term “ripple” is abused in the 
prototype filter, since we don’t really have “ripple” until we look at higher-order versions 
of the filter. In the prototype filter, we are really just talking about the specific quantities 
A, B, C, and D, since these will define the ripple in the resulting filter. The maxima and 
minima in the high and low bands of the resulting filter will exactly achieve the values A, 
B, C, and D. Since the response of the prototype filter is monotonic, we require that 

DCBA >>>  or DCBA <<<  for a real-valued solution. 
 
If we set 0=D , we get the classical elliptic low-pass filter as discussed in Gold and 
Rader [6], Storer [14], Grey and Markel [11], and others. Any nonzero value of D 
produces a kind of shelving filter. 
 
We start by representing the transfer function of the prototype filter as follows: 
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We can form four simultaneous (nonlinear) equations by equating (17) to the given 
values A, B, C, and D as follows: 
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G is included as an arbitrary scale factor so that we have four equations in four 
unknowns. Noting that (18a), (18b), and (18d) do not involve θ , we may solve them for 
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dr  first, then nr , G, and θ . Solving for dr  yields the following quadratic equation and 
solution: 
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This solution yields two values that will be reciprocals: one of magnitude greater than 
unity and the other with magnitude less than unity. We will, of course, choose the one 
inside the unit circle. From this value of dr , we may calculate the other unknowns as 
follows: 
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We must be careful to choose arccos() such that the resulting value of θ  is in the second 
quadrant. 
 
This completes the design of the prototype filter in the z-plane. We next map it 
successively into the s-plane and then the u-plane. The mapping to the s-plane is done by 
a bilinear transform [6]. This yields the real-axis images of the pole and zero as follows: 
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Similarly, the bandedge frequency θ  is mapped onto the imaginary axis on the s-plane as 

)2tan(θω = . 
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To then map this to the u-plane, we must first find the parameter of the elliptic function, 
denoted by k. This determines the aspect ratio of the rectangle in the u-plane. 
 
The bilinear transform of (21a) is patterned after that of Gold and Rader [6]. This will 
map the frequency 2π  in the z-plane into ω =1 in the s-plane. Note that this is different 
from the blinear transform of (1) in that there is no parameter, and it is not an all-pass 
filter. This transform will map the unit circle onto the j ω -axis (and vice-versa). The 
relation between frequencies on the circle and the axis will be the tangent function 
mentioned above. 
 
I should note here that the difference between this development and that of the standard 
elliptic low-pass filter is that we have allowed the positions of the zeros to be defined by 
a parameter, nu . The elliptic low-pass filter forces nr  to -1, which causes the two 
adjacent columns of zeros in Figure 3 to be coincident, so that all zeros of the resulting 
filter lie on the unit circle. This filter is widely respected because it has the narrowest 
transition width for the specified amount of ripple and number of roots6. 
 
The Jacoby Elliptic Functions  
 
 The Jacobi elliptic functions are, in some sense, a generalization of the 
trigonometric functions and can be derived (see Cayley [13]) by purely geometric 
arguments. The trigonometric functions are periodic when the argument is real, but are 
monotonic when the argument is imaginary. The elliptic functions are doubly periodic in 
that they are periodic both for pure real and pure imaginary arguments. The period along 
the real axis is denoted K(k). The period along the imaginary axis is denoted by K’(k). K 
and K’ are called complete elliptic integrals of the first kind. K is called the parameter of 

the integral. K and K’ are related in that )1()(' 2kKkK −= . The quantity 21 k−  is 
denoted by k’ so that )'()(' kKkK = . When the parameter k is evident by context, its 
explicit mention is dropped. The function )|( kusn  maps the real line into a rectangle in 
the following manner: 
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6 It is not necessarily the minimum transition width when the number of explicit poles and zeros are 
allowed to differ, or when equiripple behavior is not required. 



Manifold Joys of Conformal Mapping  James A. Moorer 

Copyright James A. Moorer              UNPUBLISHED MANUSCRIPT 17 

The function )|( kusn  is an odd function, so )|()|( kusnkusn −=− . We have given in 
equations (22a, b, c, and d) the four corners of the rectangle. The elliptic function is such 
that values in-between those mentioned fall on straight lines between the points 
mentioned in the four equations. Consequently, the straight line from 0 to K(k) is mapped 
into the straight line from 0 to 1. Similarly, the straight line from K(k) to K(k)+jK’(k) 
maps into the straight line from 1 to k1 . The line from K(k)+jK’(k) to jK’(k) maps into 
the line from k1  to ∞+ . The fourth side, the line from jK’(k) to 0 maps into the positive 
imaginary axis from ∞+ j  to 0. Thus we see that the inverse elliptic function,  )|(1 kssn−  
maps the real axis onto a rectangle with the imaginary axis as the “crosspiece” of the 
rectangle. This is the mapping we want. 
 
Prototype to Final Form 
 
The mapping I will use may be represented like this: 
 
(23) )|(1 kjssnju −= −  
 
I included the factors j and –j to effect a rotation of the rectangle by 90º, thus mapping the 
imaginary axis in the s-plane. This will map j in the s-plane to jK in the u-plane, and ω  
(the s-plane image of the bandedge frequency θ ) into jK-K’. This means that we can 
calculate the parameter of the elliptic function directly from (22c) as follows: 
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It now remains only to calculate the root images nu  and du , which lie along the negative 
real axis in the u-plane. Using the following identity: 
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We can then calculate nu  and du  as follows: 
 
(26a) )'|(1 kscu nn σ−=  
 
(26b) )'|(1 kscu dd σ−=  
 
The inverse elliptic function )|(1 kssc−  can be computed by use of the arithmetic-
geometric mean Abramowitz and Stegun, [15], equations 17.4.41, 17.6.1, 17.6.8, and 
17.6.9. 
 
Once we have calculated the u-plane images, we have all the information about the 
infinite pole-zero array. The pole columns are placed at the coordinates  
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))('( dukiKj ± and the zero columns are placed at the coordinates ))('( nukiKj ±  for all 
integer values of i. The vertical spacing of the pole-zero rows will be K(k). 
 
To find a new filter of higher order, all we need to do is find the parameter k of a new 
rectangle that has the aspect ration NK/K’ rather than K/K’. This rectangle will then 
enclose N pole-zero pairs. The sides of the rectangle will, again, be the vertical lines 
between the pole columns and between the zero columns, but the top and bottom of the 
rectangle will now enclose more roots. 
 
We can calculate this new rectangle in two ways. If we are given the desired transition 
width, this determines the new rectangle automatically, and we need only determine N, 
the number of pole-zero pairs that fit in the new rectangle. This is the approach taken in 
Gold and Rader [6]. We can also go the other direction and from a given value of N, 
calculate the parameter k that gives the appropriate aspect ratio and thus determine the 
transition ratio that value of N yields. This is the approach taken in Gray and Markel [11]. 
For completeness, we will show the calculations involved in both methods. 
 
To compute N from a given value of θ̂  (in the z-plane), we first transform to the s-plane 
by the formula )2ˆtan(ˆ θω = . The new parameter, k̂ , from (24), will then be the 
following: 
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We then choose N to be the smallest integer greater than the new aspect ratio: 
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We must now take this value of N and recomputed k̂ , which is the second method 
mentioned above, i.e., calculating k̂  given a value of N. This will give a transition ratio 
equal to or less than the desired value. If the exact low- or high-frequency ripple is not 
critical, then the above value of k̂  and N can be used directly, which yields a transition 
ratio that is exact. We can have one or the other of transition ratio or ripple specified 
exactly, but not both. 
 
Given N, we first compute what is called the “nome”, q, which is defined as KKe 'π . From 
this, there are expansions for K and kK wholely in terms of the nome. These are equations 
16.38.5 and 16.38.7 in Abramowitz and Stegun [15]. We use this detour through the 
nome because it is one of the few quantities in the theory of Jacobi elliptic functions that 
has a series expansion that converges relatively rapidly. 
 
Defining q̂  as follows: 
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Then we have these two simultaneous equations in )ˆ(kK  and )ˆ(ˆ kKk : 
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These may be solved for k̂  and )ˆ(kK .The new column positions will be the following: 
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All that is left is to map these into the s-plane, then into the z-plane. The mapping to the 
upper s-plane may be done by substitution into (23). Defining  2Nn =  we have the 
following (for N odd): 
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for i=0,1,…,N-1. Similarly, for N even, we have the following: 
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û  should be set to dû  to find the pole positions and nû  for the zero positions. These 
formulas give the upper half-plane roots only. The lower half-plane roots are, of course, 
simply the complex conjugates of the upper half-plane roots. 
 
Figure 5 shows the poll-zero array of Figure 3 with the prototype rectangle delineated in 
heavy lines. The new rectangle, which is N times higher, is marked in lighter lines. The 
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dotted lines show the extension by the reflection principle to an infinite array of such 
rectangles, each containing the same pole-zero configuration. The set of all extensions 
forms a tessellation of the plane. 
 
These roots are them mapped into the z-plane by the bilinear transform as follows: 
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One complication occurs when )'ˆ(ˆ kKu −= . In this case, the value of s will be infinite. In 
this case, (32a) should be bypassed, since we know that the value of z will be -1. Note 
that a similar complication occurs in (21), and should be resolved similarly by 
substitution of )'(kKu −= , thus bypassing the explicit calculation of σ . 
 
To calculate the elliptic function of a complex argument shown in (32), we first expand 
the function in terms of purely real arguments as follows7: 
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This is equation 16.21.2 in Abramowitz and Stegun [15]. The individual elliptic functions 
of real arguments may be computed by use of the arithmetic-geometric mean (see 
sections 16.4 and 17.6 of Abramowitz and Stegun [15]). 
 
The resulting filter must be normalized so that the low-band gain is actually equal to A. 
For a filter of odd order, this can be done simply by computing the gain at zero frequency 
and normalizing appropriately. For even order, the maximum will occur beside a pole in 
the u-plane, so we need only compute the frequency in the z-plane where it occurs. This 
may be done by (32b) with 0ˆ =u  and i=0, followed by (33). This will give a value of z 
on the unit circle where the first maximum will occur. 
 
Figure 6 shows an example of this kind of filter. Here, we have taken the ratios A/B and 
C/D to be 0.1 dB, which is a very severe constraint on the ripple in these bands. We see 
that at first order (denoted by n=1 in the figure), the transition band is so wide as to cover 
almost the entire high band. At higher order, however, we see that the transition band 
narrows significantly. 
 
To illustrate the effect of the high and low band ripple, Figure 7 shows a third-order filter 
with highly exaggerated scale. We see that in each band, the extremes are touched exactly 
N+1 times. Note that this means that the elliptic shelving filter, even for N=2, never 

                                                 
7 I apologize to the long-suffering reader about including this formula, especially since it uses the “other” 
elliptic function, dn(), which hasn’t been mentioned at all up to this point. Alas, I must refer you to the 
references for further edification on these points. 



Manifold Joys of Conformal Mapping  James A. Moorer 

Copyright James A. Moorer              UNPUBLISHED MANUSCRIPT 21 

looks exactly like the digital shelving filter of (13) with 22=σ , since the response is 
no longer monotonic. There is some value of σ , however, for which these will generate 
the identical curve for N=2. 
 
After the transforms and normalization, we may use (1) to map the filter to the desired 
frequency. Note that there is one difference in the development in this section which is 
that the beginning of the transition band was set at 2π , whereas the earlier development 
used 2π  as the middle of the transition band. By use of (9), we can calculate the value 
of a that will map the beginning of the transition band into any desired frequency ω . 
 
Other Transformations: 
 
The tessellation of the plane by rectangles as noted above is not the only tessellation that 
produces interesting filters. For example, the well-known Chebychev low-pass filters 
(Storer [14]) are derived by dividing the complex plane into strips that extend left and 
right (parallel to the real axis) off to infinity. These are transformed to the s-plane by the 
hyberbolic trigonometric functions. 
 
Other tessellations have not been shown to be useful. For instance, one could contemplate 
a covering of the plane based on triangles. Recall that each triangle must contain the same 
number of poles and zeros as every other triangle. Because of the reflection principle, 
wherever the poles and zeros are placed in the triangle, they must match exactly the 
locations in every other triangle as you flop (reflect) each triangle about each of its sides. 
There is no placement of poles and zeros in infinite rows and columns that will satisfy 
these requirements and produce any interesting “standard” filter, such as a low-pass or 
band-pass filter. Similarly, more complex repeating figures, such as hexagons, produce 
even more problems since the reflection principle gets more complicated as the number 
of edges is increased. To date, no one (that I have heard of) has made much practical use 
out of any other tessellation than those mentioned here. 
 
High-Order Transformations  
 
So far, we have only discussed transformations that map the unit circle onto something 
else (e.g. the unit circle, a rectangle, the jω  axis) on a one-to-one basis. In this section, I 
will discuss a class of transformations that map the unit circle onto itself more than once. 
Although this might seem a bizarre thing to do, I will show that it is a way that we can 
generate band-pass and band-stop filters from prototype low-pass filters. In this manner, 
we need only design a few low-pass filters for reference, and we may then use those 
reference designs to produce band-pass or band-stop filters will continuously-variable 
low and high cutoff points. 
 
The Second-Order Map 
 
A second-order conformal map from the unit circle onto the unit circle may be described 
as follows: 
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This will convert, for instance, a low-pass filter into either a band-pass or band-stop filter. 
Constantinides [3] and Moorer [2] show methods of computing the coefficients ia  to 
produce the desired filter. I will discuss an alternate method that I feel has more intuitive 
appeal. I will decompose the transformation of (35) into the composition of two first-
order bilinear transforms and one trivial second-order transform. This follows Nehari [4], 
Chapter VI, Section 1. The three transformations in order are described as follows: 
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The final filter will be a rational function of 3z . This way of decomposing the transform 
gives us a step-by-step way of understanding the process. Figure 8 shows this in the 
context of a prototype elliptic low-pass filter with a cutoff of 2π . 
 
As described earlier, the first bilinear transformation will have the effect of changing the 
cutoff and bandedge of the filter to some different frequencies which may be calculates 
by (2). The effect of squaring the variable may be seen by observing the mapping of the 
frequencies involved. A frequency ρ  in the un-transformed domain will be mapped into 
a frequency φ  in the transformed domain as follows: 
 

(37) 
2
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This transformation maps the unit circle onto itself twice (i.e., two complete revolutions 
onto one revolution). The net effect is to halve the significant frequencies (e.g., the cutoff 
frequency, the bandedge, the transition width), and to lower a new copy of the transfer 
response into the range below the Nyquist rate. For our example of the low-pass filter, the 
first bilinear transform (36a) moves the cutoff from 2π  to, say, ρ .The squaring (36b) 
produces the first cutoff at 2ρ , then another cutoff at 2ρπ − . There is, consequently, 
a stopband centered on 2π  which is symmetric and of width ρπ − . This is shown in 
Figures 8b and 8c. The second bilinear transform (36c) moves the center of the stopband 
to any desired frequency as shown in Figure 8d. 
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In general, we are required to work backwards in that we are given the ultimate position 
of the stopband, and we must then find the coefficients a and b of the required map. 
Conveniently enough, the calculation of (12) may be used to determine ρ  from the 
required bandedges. b can be determined beforehand entirely from the desired position of 
the center frequency by the use of (9). A may then be determined as that coefficient that 
maps 2π  to ρ , also using (9). 
 
This completes the design of a second-order transformation. It remains only to discuss 
some of the applications. I have shown the use of a prototype low-pass filter to produce 
bandstop filters with adjustable bandedges. If we substitute –z for z in the prototype low-
pass filter, it will be converted to a high-pass filter. This may then be transformed by (36) 
into a bandpass filter with adjustable bandedges. Perhaps the most interesting new filter 
this process yields is the high-order presence filter. 
 
The elliptic presence filter has unity gain (except for some amount of ripple) everywhere 
but in a certain region −φ  to +φ .  After a transition band that can be made arbitrarily 
narrow by increasing the order of the filter, the gain in the noted region may be set to any 
desired value, with any amount of ripple (or lack of ripple) that is desired. 
 
Figure 9 shows an elliptic presence filter for a 0.1 dB ripple in the bands. Again, for 
order-2 (the minimum order for a presence filter), the transition band covers almost the 
entire region. For increasing order, we see that the transition band can be reduced 
arbitrarily. 
 
This completes the circle. I started this article with the design of second-order presence 
and shelving filters, then after a lengthy excursion to the elliptic plane, I have concluded 
with a design method for higher-order shelving and presence filters, with an added bonus 
of bandpass and bandstop filtering using the identical design technique. All these filters 
are designed by conformal mapping of relatively simple prototype filters. 
 
Let me mirror my earlier caution about high-Q filters for the case of very high-order 
filters. When the order of, say, an elliptic presence filter is raised, the transient response 
gets longer and longer. That is, the Q of some of the roots of the filter gets larger and 
larger. Ultimately, the perceptual result is that you may begin to hear a “whistle” at 
frequencies that correspond roughly to the bandedges. It is near these transition 
frequencies where the roots will approach the unit circle most closely, and thus can 
become audible. Care must be used when using high-order filters to keep artifacts down 
to an acceptable level. 
 
High-Order Notch Filters  
 
Conformal mapping may also be used to create high-order notch filters. We could simply 
take the same second-order notch described earlier and apply it again and again. This 
would have the effect of widening the notch. Each application will lower the frequency of 
the 3 dB point by 3 more dB. After four applications, that same frequency will be down 
by 12 dB. We could just design a different second-order notch that is even more narrow, 
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so that multiple applications result in an acceptable response. Another way is to start with 
a prototype low-pass filter and transform it into a notch. This gives us a way to design 
high-order notch filters of any (even) order. 
 
To start, we select the kind of low-pass filter that has all the zeros at z=-1. These filters 
include the well-known Butterworth and Chebychev forms (Storer [14]). The 
development would proceed by transformations (36) as shown in Figure 8, except that 
these prototype filters have only one point where the response goes exactly to zero, in 
contrast with the elliptic filters which touch zero at N points (after the frequency doubling 
transform of (36b), shown in Figures 8c and 8d). This design procedure is roughly the 
same as designing bandstop filters. 
 
Figure 10 shows a notch filter that was made by starting with a 5th-order Butterworth 
low-pass filter with a 3 dB point at 0.45p. The frequency doubling transform of (36b) has 
moved the zeros to 2π . The simple transform of (1) may now be used to move the notch 
to any desired frequency. 
 
Still Higher-Order Mappings 
 
Moorer [2] showed that any (finite-order) rational all-pass function will transform, say, a 
prototype low-pass filter into a filter with any number of pass and stop bands. I will 
denote the critical frequency of the prototype filter by β . Each pass band will have the 
identical maximum and minimum values (ripple) as the passband of the prototype filter, 
and likewise for each stop band. The transform can be described as follows: 
 

(38) 
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We take 0a  to be 1 by convent ion. 
 
This transform maps the unit circle onto itself a total of N times. 
 
To determine the coefficients ia , we need only equate )( kjeg θ−  with βje ±  for each 

desired bandedge frequency kθ . This yields N simultaneous equations of the following 
form: 
 

(39) 
βθ jj eeg k ±− =)( , for k=1…N 

 
If we represent β±  by kφ , this reduces to the following (real) set of equations: 
 



Manifold Joys of Conformal Mapping  James A. Moorer 

Copyright James A. Moorer              UNPUBLISHED MANUSCRIPT 25 

(40) ∑ =






 +− 0

2
1

)
2

(cos kki
N

ia φθ ,  for k=1…N 

 
This is N simultaneous equations in N unknowns (since 0a  is known to be 1) with all 
coefficients real. We will take the kθ  to be order of ascending value. We may then 
identify the values of the kφ  to be β , βπ −2 , βπ +2 , βπ −4 , βπ +4 , and so on. If 
the band edge frequencies are distinct (that is, β  is not zero or π ), then (40) has a 
solution, and the solution is unique. 
 
This transform was rediscovered by Franchitti [16]. He added an explicit proof of 
uniqueness, and a “fast” method of solving the simultaneous equations (40). He also 
showed that the above ordering of the bandedge frequencies is necessary and sufficient 
for a stable solution to the equations (i.e., that the poles of (38) are inside the unit circle). 
 
This is an interesting transformation from a theoretical point of view. It represents the 
entire class of rational mappings from the unit circle onto itself. I have yet to find any 
direct practical application for transformations above second order, but I am still looking. 
 
Some reasons can be identified for the lack of interest in this transformation. In general, 
when we need multi-band filters, we need different features in each of the various bands, 
and not just the repetition of a single set of features. For instance, one band might need a 
different gain, or a different ripple than another band 8. 
 
Example: a 3rd-Order Mapping 
 
I will start with a prototype low-pass filter that is a fourth-order elliptic filter with a cutoff 
frequency (ß) of 2π . I will transform this into a filter with two pass bands and two stop 
bands. One pass band will extend from 0 to 0.3p and the second passband from 2π  to 
0.6p. The transform polynomial, ia , is found to be {1.0, -0.1583844, 0.8042261, -

0.1583844). The argument of the function )( θjeg −  is shown in Figure 11. As θ  goes 
from 0 to p, the argument moves from 0 to 3p, showing that three complete revolutions 
around the unit circle are accomplished. The pole-zero plot of the prototype filter and the 
transformed filter are shown in Figure 12. The frequency responses are shown in Figure 
13. 
 

                                                 
8 The original version of this paper said that there was no easy way of determining the root positions of the 
resulting filter (after the substitution of (38) into the prototype filter). I no longer sure that this is the case. 
One would have to compute the inverse of (38), then map the roots using that inverse into its various 
values. (38) cannot be inverted directly, but it is a relatively simple numerical procedure to locate the root 
images using Newton’s method. Since we know roughly where the roots will be, Newton’s method can 
probably be made to converge to the correct solution in all but the most pathological cases (it is not 
guaranteed to converge). This seems to me to be simpler than factoring the resulting polynomials, since the 
order of the function (38) is N, which is surely less than the order of the filter polynomials. 
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I should point out again that in general, these transformations increase the Q of each of 
the poles. These transforms that increase the order are especially notorious for bringing 
the roots closer and closer to the unit circle. This makes sense. The more roots you try to 
cram into the same unit circle, the closer they will have to be to the unit circle. 
 
Inverse Conformal Maps  
 
One interesting way to view these transforms is to plot the inverse transform. Any 
transform above first order will be multi-valued, of course, so there is some question of 
how to plot these. I have plotted a number of 3rd and 4th-order transforms by displaying 
the images of the unit circle with radial, dotted lines. The prototype image has 16 radial 
lines, equally spaced around the circle. The dots on the radial lines are equally spaced. 
After the inverse transform, of course, they are no longer equally spaced. In fact, 
generally they are no longer straight lines. For instance, the inverse transform of the 3rd-
order example above is shown in Figure 14. There are three images of the unit circle 
shown – one on the real axis, one above and one below. The map is symmetric around the 
real axis, since all the coefficients of the transform are real. Note how the upper and 
lower images have the radial lines all crammed together, emphasizing how the roots are 
all clumped up near the unit circle. 
 
Figure 15 shows a progression of 3rd-order mappings with gently changing parameters. 
Figure 16 shows some 4th-order mappings. I find these quite pretty. 
 
FIR Filters? Linear Phase? 
 
All the filters shown in this paper are IIR. Can conformal mapping be applied to FIR 
filters? Well, yes they can, but after the transformation, they will no longer FIR. FIR 
filters have “implied” poles at zero frequency. These implicit poles become explicit after 
any conformal map. By “explicit,” I mean that they are no longer at zero frequency, thus 
the filter is no longer FIR. Even the simplest transform of (1) will cause the origin of the 
complex plane to be displaced left or right along the real axis, so all the “implicit” poles 
at zero become non-zero (and all equal). Higher-order transforms produce multiple 
images of the origin which are not necessarily on the real axis. 
 
Having dismissed the idea of transforming FIR filters, we might look at why anyone 
would want to do that in the first place. The attraction of FIR filters is the linear phase 
property. Unfortunately, the linear phase property is not preserved under any but the most 
trivial conformal maps. This becomes evident as soon as we look at the mapping between 
frequencies in the prototype filter and frequencies in the resulting filter. In general, this 
correspondence is a curve and not a straight line. Linear phase requires that this 
correspondence be exactly linear. Only a trivial transform, such as the squaring in (36b), 
preserves linearity of the frequency axis. 
 
Note that this means that any attempt to map an IIR approximation to a linear phase filter 
by conformal mapping will produce a filter that is no longer anything like linear phase. 
This means that analog filters with approximately linear phase, such as Lerner filters 



Manifold Joys of Conformal Mapping  James A. Moorer 

Copyright James A. Moorer              UNPUBLISHED MANUSCRIPT 27 

(Lerner [17]) or Bessel filters (Storch [18]), have no particular reason to be used as 
prototypes for digital filters, since they will lose their distinguishing property. They can 
be digitized by impulse- invariance (Gold and Rader [6]) if the cutoff frequency is low 
enough so that no significant aliasing occurs. This will preserve the property of 
approximate phase- linearity. 
 
Summary 
 
I have shown an approach to the generation of coefficients for digital filters for 
professional audio applications (among others). Beginning with simple second-order 
presence and shelving filters that mimic the operations found commonly in mixing-desk 
equalizers, I showed how the notion of conformal mapping may be used to generalize the 
notion of shelving and presence filters of higher order by the use of elliptic functions. 
 
All of the filters described here (except for the high-order notch that I just thought of) 
have been available in commercial digital audio systems for more than a decade at the 
time of this writing. 
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1a 1b 

 
Figure 1 – Response of the digital second-order presence filter of (4). 1a shows such a 
filter centered at 2π , which makes the response perfectly symmetric. The bandedges −θ  
and +θ  are then related by +− −= θπθ . 1b shows the presence filter after transformation 
by (1) to a new center frequency ω . The response is no longer symmetric. The new 
bandedges −φ  and +φ  are related to the old ones by (2a) with *rho* taking on the values 

−θ  and +θ . 
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Figure 2 – Response of the digital second-order shelving filter of (13). The zero-
frequency response, A, is varied in 5dB steps from +20 (boost) to -20 (cut). The bandedge 
value, F, is set to differ from A by 3 dB at the frequency 2π , except when the boost/cut 
amount falls below 6 dB, in which case it is set to half the boost/cut amount (in dB). 
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Figure 3 – Regular infinite 2-dimensional array of poles and zeros. The two vertical lines 
between pole columns and between zero columns are axes of symmetry. Every row is 
also an axis of symmetry, as well as a line between any two rows. The response along 
any axis of symmetry is equiripple by inspection. 
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Figure 4 – Mapping of a single pole and zero from the z-plane in 4a to the s-plane in 4b to 
the u-plane in 4c. The mapping from the unit circle to the s-plane is accomplished by a 
bilinear transform. The mapping of the imaginary axis to a rectangle in the u-plane is 
accomplished by the Jacobi elliptic function )|( kusn . 
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Figure 5 – The regular array of poles and zeros of Figure 3 with the prototype first-order 
pattern of Figure 4c shown in the rectangle in heavy lines. The height and width of this 
rectangle will be K(k) and K’(k). To reduce the transition width, we choose a new 
rectangle N times higher to enclose N zeros and poles. This will have the same value of 
ripple since the geometry of the pole-zero array is unchanged. Since we are performing 
the mapping on axes of symmetry, the reflection principle is respected. The transition 
width is reduced as we enclose more and more roots. This is because the transition region 
is the top and bottom of the rectangle. The top and bottom become proportionately 
smaller in relation to the perimeter of the rectangle as the height of the rectangle is 
increased to enclose more roots. 
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Figure 6 – The elliptic shelving filter for varying orders. The low and high bands have a 
ripple of 0.1 dB, which is so restrictive that the first order filter has a transition band that 
covers nearly the entire frequency axis. As the order is increased, the transition band is 
progressively narrowed. 
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Figure 7 – A 3rd-order elliptic shelving filter with the vertical greatly exaggerated to show 
the nature of the ripple. We see that the bounds (A and B for the low-frequency band, C 
and D for the high-frequency band) are touched exactly N+1 times. θ  represents the high 
edge of the transition band. The amount of ripple can be set to any desired value, with the 
consequence that as the ripple is reduced (as N, the filter order is kept constant), the 
transition width will increase. 
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Figure 8 – Second-order mapping of an elliptic low-pass filter in Figure 8a by the 
transformations of (36). In Figure 8b, the bandedge has been moved by (36a) to the new 
cutoff frequency ρ . The substitution (36b) halves all the frequencies and produces a new 
bandedge, as is shown in Figure 8c. The response is now symmetric about 2π . The final 
substitution (36c) moves the center frequency from 2π  to any desired value ω , 
producing new bandedges −φ  and +φ , as shown in Figure 8d. Note that filters produced 
by using the substitution (36b) will always have even order. 
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Figure 9 – The filter shown in Figure 6 after being transformed by (36) to a digital elliptic 
presence filter. The substitution of (36b) doubles the order of the filter. Again, the 0.1 dB 
value of ripple forces a very wide transition band at the lowest order (n=2). The transition 
band is reduced with increasing filter order. 
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Figure 10: Pole-zero plot and magnitude plot of 10th-order notch filter formed by making 
prototype Butterworth low-pass filter, then using the transformation of (36b) to bring the 
stopband to frequency 2π . The transform of (1) may then be used to move the notch 
frequency to any desired value. The width of the notch has been exaggerated. A practical 
notch would be much more narrow. 
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Figure 11: 
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Figure 13: 
 



Manifold Joys of Conformal Mapping  James A. Moorer 

Copyright James A. Moorer              UNPUBLISHED MANUSCRIPT 43 

 
 

 
 
Figure 14: 3rd-order inverse conformal map from the example in the text. The prototype 
unit circle has 16 dotted radial lines. The lines were at equal angles around the circle, and 
the dots were uniformly spaced along the radial lines. After the transformation, there are 
three images of the circle. The origin of one is along the real line, just to the right of 
center. There are two other images above and below the real line. Note the bunching of 
the lines in the upper and lower images, showing the increase in the Q of the roots that 
can happen under conformal filter transformations. 
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Figure 15: A sequence of 3rd-order inverse conformal maps. This represents a multi-band 
filter as described in the text as an example. The location of the critical frequencies is 
being lowered from one picture to the next. 
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Figure 16: 4th-order inverse conformal maps. 
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Appendix I: 
 
Here is a C program to compute the coefficients of second-order presence and shelving 
filters as described in the text: 
 
#include <stdio.h> 
#include <math.h> 
 
#define PI  3.141592653589793238462643 
#define SQRT2  1.4142135623731 
#define SPN  1.65436e-24 /* Semi-arbitrary Small Positive Number */ 
     /* Used to test for pathological limiting */ 
     /* cases. */ 
  
double flx_flatmp; 
#define flabs(arg) (((flx_flatmp = (arg)) >= 0.0) ? flx_flatmp : -flx_flatmp) 
 
/* ---------------------------------------------------------------------- 
   db2lin - Convert between db and linear 
   = 10^(x/20) 
----------------------------------------------------------------------- */ 
double db2lin(double x) 
{ 
 return exp(2.30258509299404568401 * (x * 0.05)); 
} 
 
/* ------------------------------------------------------------------------ 
   bw2Angle - Given bilinear transform parameter (from above routine) and 
desired bandwidth (as normalized frequency), computes bandedge, e, of filter 
as if it were centered at the frequency .25 (or PI/2, or srate/4). The 
bandwidth would then 2*(.25-e). e is guaranteed to be between 0 and .25. 
 
To state it differently, given a filter centered on .25 with low bandedge 
e and high bandedge .5-e, the bilinear transform by a 
will produce a new filter with bandwidth (i.e., difference between the 
high bandedge frequency and low bandedge frequency) of bw. 
------------------------------------------------------------------------- */ 
double bw2Angle(double a, double bw) 
{   double snT, csT, d, sn, cs, mag, delta, theta, tmp, a2, a4, asnd; 
     
    snT = sin(2.0 * PI*bw); 
    csT = cos(2.0 * PI*bw); 
    a2 = a*a; 
    a4 = a2*a2; 
    d = 2.0*a2*snT; 
    sn = (1.0+a4)*snT; 
    cs = (1.0-a4)*csT; 
    mag = sqrt(sn*sn + cs*cs); 
    d /= mag; 
    delta = atan2(sn, cs); 
 
    asnd = asin(d); 
    theta = 0.5 * (PI - asnd - delta);  /* Bandedge for prototype */ 
    tmp = 0.5 * (asnd - delta);   /* Take principal branch */ 
    if (tmp > 0.0 && tmp < theta) theta = tmp; 
    return (theta/(2.0 * PI));  /* Return normalized frequency */ 
} 
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/* ------------------------------------------------------------------------- 
   presence - Design straightforward 2nd-order presence filter. Standard 
storage method not used - just returns coefficients directly. 
Must be given (normalized) center frequency, bandwidth, and boost/cut in dB. 
 
Returns filter of form: 
 
                -1       -2 
       A0 + A1 Z   + A2 Z 
T(z) = ---------------------- 
               -1       -2 
       1 + B1 Z   + B2 Z 
 
------------------------------------------------------------------------- */ 
void presence(double cf, doublebw, doubleboost, 
  double *a0, double *a1, double *a2, double *b1, double *b2) 
{   double a, A, F, xfmbw, C, tmp, alphan, alphad, b0, recipb0, asq, 
 F2, oneplusa2, oneminusa2; 
 
    a = tan( PI*(cf - 0.25) );  /* Warp factor */ 
    asq = a*a; 
    A = db2lin(boost); 
   /*  A = pow(10.0, boost/20.0); */  /* Cvt dB to factor */ 
    if (boost < 6.0 && boost > -6.0) F = sqrt(A); 
    else if (A > 1.0) F = A/SQRT2;  /* F = A/sqrt(2.0); */ 
    else F = A * SQRT2;    /* F = A * sqrt(2.0); */ 
 /* If |boost/cut| < 6dB, then doesn't make sense to use 3dB point. 
    Use of root makes bandedge at half the boost/cut amount. 
 */ 
    xfmbw = bw2Angle(a, bw); 
 
    C = 1.0 / tan(2.0 * PI * xfmbw); /* co-tangent of angle */ 
    F2 = F*F; 
    tmp = A*A - F2; 
 /* Limit case – compare with semi-arbitrary small number */ 
 /* Substitute small-value approximation if necessary to */ 
 /* prevent possible divide overflow */ 
    if (flabs(tmp) <= SPN) alphad = C; 
    else alphad = sqrt( C*C * (F2 - 1.0) / tmp ); 
    alphan = A*alphad; 
 
    oneplusa2 = 1.0 + asq; 
    oneminusa2 = 1.0 - asq; 
    *a0 = oneplusa2 + alphan*oneminusa2; 
    *a1 = 4.0*a; 
    *a2 = oneplusa2 - alphan*oneminusa2; 
 
    b0 = oneplusa2 + alphad*oneminusa2; 
    *b2 = oneplusa2 - alphad*oneminusa2; 
 
    recipb0 = 1.0/b0; 
    *a0 *= recipb0; 
    *a1 *= recipb0; 
    *a2 *= recipb0; 
    *b1 = *a1; 
    *b2 *= recipb0; 
} 
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Appendix II: 
 
Here is a C program to compute the coefficients of second-order shelving filter as 
described in the text: 
 
/* ------------------------------------------------------------------------- 
   shelve - Design straightforward 2nd-order shelving filter. Standard 
storage method not used - just returns coefficients directly. 
Must be given (normalized) center frequency, and boost/cut in dB. 
This is a LOW shelving filter, in that the response at z = -1 will 
be 1.0. 
 
Returns filter of form: 
 
                -1       -2 
       A0 + A1 Z   + A2 Z 
T(z) = ---------------------- 
               -1       -2 
       1 + B1 Z   + B2 Z 
 
------------------------------------------------------------------------- */ 
void shelve(double cf, double boost, 
  double *a0, double *a1, double *a2, double *b1, double *b2) 
{   double a, A, F, tmp, b0, recipb0, asq, 
 F2, gamma2, twosigmagamma, oneplusgamma2; 
    double gamman, gammad, ta0, ta1, ta2, tb0, tb1, tb2, aa1, ab1; 
 
    a = tan( PI*(cf - 0.25) );  /* Warp factor */ 
    asq = a*a; 
    A = db2lin(boost); 
   /*  A = pow(10.0, boost/20.0); */  /* Cvt dB to factor */ 
    if (boost < 6.0 && boost > -6.0) F = sqrt(A); 
    else if (A > 1.0) F = A/SQRT2; /* F = A/sqrt(2.0); */ 
    else F = A * SQRT2;   /* F = A * sqrt(2.0); */ 
 /* If |boost/cut| < 6dB, then doesn't make sense to use 3dB point. 
    Use of root makes bandedge at half the boost/cut amount. 
 */ 
 
    F2 = F*F; 
    tmp = A*A - F2; 
 /* Limit case – compare with semi-arbitrary small number */ 
 /* Substitute small-value approximation if necessary to */ 
 /* prevent possible divide overflow */ 
    if (flabs(tmp) <= SPN) gammad = 1.0; 
    else gammad = pow( (F2 - 1.0)/tmp, 0.25); /* Fourth root */ 
    gamman = sqrt(A)*gammad; 
 
/* Once for the numerator */ 
 
    gamma2 = gamman*gamman; 
    oneplusgamma2 = 1.0 + gamma2; 
    twosigmagamma = SQRT2*gamman;  /* 2*ROOT2OVER2*gamman; */ 
 
    ta0 = oneplusgamma2 + twosigmagamma; 
    ta1 = -2.0*(1.0 - gamma2); 
    ta2 = oneplusgamma2 - twosigmagamma; 
 



Manifold Joys of Conformal Mapping  James A. Moorer 

Copyright James A. Moorer              UNPUBLISHED MANUSCRIPT 49 

 
/* And again for the denominator */ 
 
    gamma2 = gammad*gammad; 
    oneplusgamma2 = 1.0 + gamma2; 
    twosigmagamma = SQRT2*gammad;  /* 2*ROOT2OVER2*gammad; */ 
 
    tb0 = oneplusgamma2 + twosigmagamma; 
    tb1 = -2.0*(1.0 - gamma2); 
    tb2 = oneplusgamma2 - twosigmagamma; 
 
/* Now bilinear transform to proper center frequency */ 
 
    aa1 = a*ta1; 
    *a0 = ta0 + aa1 + asq*ta2; 
    *a1 = 2.0*a*(ta0+ta2)+(1.0+asq)*ta1; 
    *a2 = asq*ta0 + aa1 + ta2; 
 
    ab1 = a*tb1; 
    b0 = tb0 + ab1 + asq*tb2; 
    *b1 = 2.0*a*(tb0+tb2)+(1.0+asq)*tb1; 
    *b2 = asq*tb0 + ab1 + tb2; 
 
/* Normalize b0 to 1.0 for realizability */ 
 
    recipb0 = 1.0/b0; 
    *a0 *= recipb0; 
    *a1 *= recipb0; 
    *a2 *= recipb0; 
    *b1 *= recipb0; 
    *b2 *= recipb0; 
} 
 
 
 
 


