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ABSTRACT

There are a number of applications for banks of bandpass filters in profes-
sional audio studios, both for film and music production. In this paper, we explore
digital techniques for bandsplitting that have the property that the spectrum may
be separated into a number of bands such that when these bands are added back
together, the result is a pure delay. There need be no amplitude or phase distor-
tion other than delay. This allows such applications as linear-phase graphic

. equalizers, multi-band noise gates, and many other improvements over conven-
tional studio equipment. These algorithms have been implemented on a large-
scale audio signal processor and run in real time. They are currently being used
in major motion picture production.

1. Introduction

We will take as the problem to be solved here the case of the graphic equalizer, and the case of a
posteriori noise reduction. We will show that one manner of solving these problems uses the com-
mon mechanism of linear-phase bandsplitting. We will further show that formulating the solutions
this way will offer some unique advantages that can only be obtained through digital processing of
the audio signal. Finally, we will show the relation between bandsplitting and short-term Fourier
analysis with application to FIR bandpass filter design. We begin with a description of the prob-
lems to be solved:

1.1. Graphic Equalization

One common complaint with graphic equalizers is that if you set each band to, say, a 6 dB boost,
the resulting spectrum is no longer flat. The more the boost or cut, the more “bumpy’’ the spec-
trum becomes. Graphic equalizers are generally equivalent to pure gain or attenuation only when
all the controls are set at 0 dB boost/cut. Similarly, the various bands of the equalizer interact, so
that adjusting one band will often force readjustment of the adjacent bands. We seek a graphic
equalizer of potentially any number of bands of any desired widths which has the property that
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the bands can be made essentially non-interacting, that the composite transfer response at any
setting of the band gains exhibits linear phase, and that when all the band gains are identical, the
equalizer is equivalent to pure boost or cut with no amplitude distortion (other than the digital
quantization of the signal and possibly some roundoff error).

1.2. Noise Reduction

In modern film production, often dialog recorded on the set must be used, despite the fact that
there may be contaminating noise present in the recording. For the most part, this noise consists
of wide-band random signals, such as air or wind noise. In many cases, it is not necessary to com-
pletely eliminate the noise, but would be sufficient to simply attenuate it between utterances or in
quiet passages. The general term for this kind of processing is called “noise gating”, where the
gain of an amplifier is set to zero (or nearly zero) during the quiet passages. If the noise is not too
severe, this is an acceptable method of noise reduction. Furthermore, if the noise is concentrated
in a particular spectral range, then it is not necessary to gate the entire signal, but just that por-
tion of the signal in the frequencies where the noise is present. An obvious way to do this is to
split the signal into 2 number of frequency bands and apply noise gating to each one separately.
For this application, we require that when the bands are summed, in the absence of noise gating
(that is, while the gates are not applying any attenuation), the resulting signal has no distortion
other than some small time delay.

We see then that these two applications can make use of the same mechanism: the splitting of the
audio spectrum into a number of bands such that they may be recombined by addition to recreate
the original signal without error (other than time delay). Let us now see how this may be done.

2. Short-Term Fourier Analysis

One objection to the Fourier transform is that one loses time: that is, when we take the Fourier
transform of a signal, the result is a function of frequency only, and not of time. The time vari-
able goes away. To make the Fourier transform correspond more closely to our intuitive (and per-
ceptual) concept of spectrum, we can define a time-variant transform that operates only on a lim-
ited part of the signal at each point in time. The result of this is a function of both time and fre-
quency, and can be thought of as a time-varying Fourier transform. More specifically, given 2
sampled data signal z(n), we define its time-variant short-term Fourier transform, X (n,m), as
follows [1]:
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X(n,m)= i h(i-n)z(i)e ¥ (1)
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where n is the sample number (time index) and m is the frequency number. For a given value of
m, say mg, the 1-dimensional signal X (n,m,) represents a function of time only that can be
interpreted as the output of one channel of a bank of filters with the center frequency of the band
equal to m f, [N, where f, is the sampling frequency in Hertz.

To show that this is a reversible transform, we need only sum over the frequency term, m. Let us
do so and call the result y (k).
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By interchanging the order of summation, we derive the following:
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The last term of this equation is zero for all values of k¥ — i except when k — ¢ is an integral mul-

tiple of N, where it takes on the value N. This means that y (k)= z (k) if h(n) obeys the fol-
lowing properties:

hO) = 5 (3a)

h(I N)=0, 50,1 an integer (3b)

This derivation is taken from Portnoff [1].

The point of this is the following: if A (n ) represents the impulse response of low-pass filter of any
kind that obeys the constraints of equation (3), then X (n,m) is the output of the bandpass filter
with a frequency response equal to that of 4 (n), only shifted up in frequency to m fs/N Hertz.
To see how this works, let us take the impulse response of the system. If we take z(n) to be
unity at n = 0 and zero elsewhere, we can see that X (n,m ) will be the following:
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which can be recognized as the impulse response translated in (complex) frequency by an amount
2rm [N.

Note that equation (3) does not constrain the filter h(n) to be high-pass, low-pass, or anything
else. It is just that if we want equation (4) to represent a bandpass filter, then h(n) must be a
low-pass filter. Additionally, if h(n)= h(~n), the filter will be of linear phase. For the remainder
of this paper, we will assume that h(n) is a linear-phase, low-pass filter. In this case, X (n,m)
represents the output of N linear-phase, complex bandpass filters. The original signal may be per-
fectly reconstructed by adding together the output of all these bandpass filters 1.

t Note that a linear-phase filter, h (n ), is unrealizable as such. If we assume, however, that A ( | n | ) =0

for n > n, then we can produce a realizable filter simply by replacing h (n ) by h (n +n0), thus introducing
an n g sample delay.
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Note that we will alternately refer to X (n ,m) as the output of the mth bandpass filter at sample
number n, and as the transform of z(i) as a function of the sample number, n, and the fre-
quency index m.

2.1. Whither Linear Phase?

As an aside, we might ask why the linear-phase property is important. In many applications, it
makes no difference at all whether the filters are linear phase, zero phase, maximum phase,
minimum phase, or whatever. In fact when using a graphic equalizer to counteract the effects of a
system that already exhibits phase distortion, linear-phase filters are of no help whatsoever in
correcting this phase distortion. On the other hand, if we are using bandsplitting as defined above
for a special effect (to “brighten’’ a passage, for instance), then we want to use linear phase filters
to prevent any differential delay between the various channels. The linear phase property assures
us that no matter what linear combination of the channels is taken, the result will be linear
phase. The high frequencies will emerge at the same time as the low frequencies. This can make 2
slight difference with impulsive sounds, but the effect in any case would be quite subtle.

2.2. Whither Fourier Analysis?

Although what we described above is certainly a way of splitting a signal into a number of
equally-spaced frequency bands such that they may be summed to form a pure delay, one might
imagine that there should be other ways to break up the spectrum. In fact, however, if the fre-
quency bands are equally spaced, then all other bandsplitting methods can be derived from the
time-variant Fourier analysis as shown above.

A more relevant question might be why we insist on equally-spaced bands, where other options,
such as constant-Q (third octave), are more common and perhaps more perceptually relevant? The
problem is that there is no general closed-form discrete constant-Q transform with the identity
property that has been published at this time. There is octave decimation (2], and some other
forms, but there is no general analog to equation (1). Note that there is such an analog in the
continuous domain [3], and perhaps such a transform will be forthcoming in the future.

Moreover, by combining bands of the above Fourier analysis, we can produce approximations to
any grouping we wish. In fact, for octave bands, or any grouping where the width of a band is
related to the width of the previous band by a rational number (i-e., a ratio of two integers), then
the grouping can be done exactly. We use Fourier analysis as a paradigm for developing this class
of bandsplitting filters. When we come to actually realize the filters, as we will show later, we will
not have to realize exactly equation (1) above, but we will derive an equivalent form that exhibits
much lower compute requirements in certain cases and employs no complex arithmetic.

There are also some reasons related to perception why at least the lower frequencies should be
grouped roughly linearly rather than exponentially (constant-Q). This relates to the fact that crit-
ical bands, thought to be the the fundamental bandwidth of the ear’s frequency analysis, are
roughly linearly spaced in the lower frequency range. One might speculate that this is so that har-
monics of the speaking voice are separated into distinct bands, but this would be pure conjecture.

3. Choice of Low-Pass Filters

The sharpness of the cutoff of each of the bands depends entirely on the low-pass filter, h (n ). The
spectral shape of each bandpass filter will be identical to that of the low-pass filter shifted in fre-
quency so that it is centered on the particular band, as shown in equation (4b). Although we
could choose any kind of low-pass filter, we will only deal with one particular class of filter which
we may define as follows:



M
G!1+2chos[2n—n—}£]} = <n<

N
. E=1
h(n)= 0 otherwise (52)

vz
|z

where the gain factor, G, may be set as follows:

G =

o
N {l+§Dk} )

This assures that the window satisfies equation (3).

This class includes the popular Hamming [4] (D, = 0.92), Haoning [4] (D, = 1.0), and Taylor [5]
windows. This exposition of this window family is taken from Rife and Vincent [6]. It does not
include, for instance, the Dolph-Chebychev window functions [7] or the Kaiser-Bessel window [8].

The point of chosing this class of window functions is that the N-point discrete Fourier transform
of these window functions have only 2M + 1 non-zero points. In fact, we can find the transform
of these windows by use of equation (1). If we again set the input signal, z(n), to the unit
impulse, we can obtain the channel-by-channel impulse response as follows:
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If we limit n to be between —N /2 and N /2-1, we may write this as follows:

21y nm 1 M =2xyn(m +k) “2ryn(m - k)
—¢cile ¥ +5 X Dile N +e ¥ (6b)
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Note that this can be separated into 2M + 1 different components. In fact, it is equivalent to the
following 2-step proceedure: first, take 2 transform, X(n,m), using a unit window, h (n)=1 for
n>-N/2and n <N [2and h(n)=0 elsewhere. We may then form X (n,m) as follows:

£(rm) = 6{X(nm)+ 5 8 0 [xlm -k yex(em + )} g

This means that for this class of windows, the output of a particular channel may be realized as
weighted sum of ¢ small number of channels of an analysis which was computed using a simple,
rectangular window. The window need not be applied to the input sequence directly, but may be
relized as linear combinations of adjacent transform values. This result is, in fact, obvious, since
it is just a restatement of the well-known convolution property: multiplication in the time domain
is equivalent to convolution in the frequency domain and vice-versa. What this class of windows
accomplishes is to limit the number of frequency terms that need be summed for each channel of
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output. With the Kaiser-Bessel window, for instance, the linear combination would include all the
frequency terms.

It should also be clear that wider bands may be formed by simply summing adjacent bands. Since
this class of filters (windows) obeys equation (3), the sum of all bands will always be an ideatity.

The general procedure, then, for performing linear-phase bandsplitting is first to use equation (1)
with a rectangular unit window function to produce N analysis channels, then use (7) above to
combine the channels to produce the desired bandwidth and sideband rejection. The problem is
then reduced to finding the coeflicients, D, that produce the desired band shapes.

As is usual in engineering, there are no ‘‘best” choices for windows: there are only tradeoffs of
various kinds. Fortunately, this problem is equivalent to one that has been thoroughly studied,
and that is the problem of the design of directional antennas [5, 7). We will suggest here one class
of windows that represents a ‘‘reasonable” compromise between the desire for sharp cutoff and
high stop-band rejection. These are called Class Il weighting functions by Rife and Vincent 6],
and are shown in Table 1.

1 2 3 4
1.0
1.19685 19685
1.43596 497537  .0615762
1.566272  .725448  .180645 0179211

N N [ES

TABLE I - Window coeflicients, D, of the Class Il weighting functions [6] for various orders,
M. '

The window for M = 1 is, of course, the Hanning window.

Note that equation (52) as it is written does not exactly represent a line: --phase filter. If N is
even, then the cosines must be shifted by 1/2 sample to make the window function perfectly sym-
metric. If N is odd, then the limits must be changed to (N -1)/2 < n < (N -1)/2. This
assures linear phase. We have been somewhat careless in the use of N /2 above, since it is ambi-
guous when N is odd.

3.1. The Graphic Equalizer Revisited

We can see now that by simply multiplying each channel of our analysed signal, X (n,m), by a
constant, say a(m), we get the eflect of a graphic equalizer. The property of linear phase follows
automatically if h (n) is linear phase. The flatness is automatic if the a (m) are equal. Further-
more, if (3) is obeyed, the rolloffl (sharpness) of the bandpass filters may be made arbitrarily great
by different choices of & (n).

3.2. The Noise Gate Revisited

We may implement various kinds of a posteriori noise reduction by first dividing the signal into a
number of frequency bands, then by applying a dynamic range expansion algorithm to the output
of each band. The idea of the expander is to reduce the gain of an individual band when the
energy in the band drops below a certain level. The exact manner in which the gain is reduced
(i.e., how abrupt the transition is) determines the properties of the expander. If a very sharp
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transition from unity gain to zero gain is introduced, the result is a noise gate. Many other
choices are possible. Our choice is to use the following expansion function [9]:

g=(l~a)la:)\]2y+a (8)

s is the RMS signal coming out of a particular band. X is the threshold where the gain will start
to be reduced. r determines the sharpness of the gain change. If r is set to a large value (like 5),
a noise gate is realized. A more reasonable value is r = 1. a determines the minimum gain at low
levels. With a set to, say, -12 dB, the signal during the quiet portions will be attenuated by 12
dB. With a set to one, no expansion is performed.

Since computing & necessarily involves some delay, we delay the channel output by that same
amount before applying the gain control. This gives the channel the effect of seeing into the
future, since the gain starts changing well before the signal arrives. Delays are trivially imple-
mented in digital form. Note that this makes the more common “fast attack, slow decay” adjust-
ments much less important, since they are simply a way of making up for the fact that the signal
is not known in advance. Using this kind of ‘look-ahead” makes the gain change, say, at the
beginnings of spoken words, especially plosives, much more subtle. The common “bite” of the
noise gate opening up is greatly reduced.

In actual usage, one has to decide how many bands to use and what their response should be. At
first, one might think that the more independent frequency bands, the better the results will be.
This is only partially true. It turns out that there must be either very few bands (such as 4
bands), or very many (256 or more) and nothing in between seems to help. The problem seems to
be that with intermediate numbers of bands, each band covers just one or two critical bands.
When the gain in 2 particular band is reduced, the “missing” spectrum is quite audible. It sounds
a bit like trans-oceanic radio broadcasts fading in and out. With a small number of bands, the
coverage is overlapping so that each critical band in the ear receives contributions from several
different filter bands. This means that when one band drops out, there is still some contribution
from the other bands, so that the ‘‘phasing’ effect is reduced. With a very large number of bands,
each critical band in the ear receives contributions from several different filter bands, thus making
the loss of a single filter band less audible. With intermediate values, the size of the filter bands
and the size of the critical bands become of roughly the same order, producing highly audible

results. The preceeding is a plausibility argument only and should not be mistaken for established’

fact.

The best results we have obtained are with large numbers of bands. We break the signal into 256
bands and apply the gain control to each one separately. The threshold, X, is set during a “train-
ing”’ run on just the noise alone. This gives us the RMS value of the noise in each band, o, .
This will be recognized as an approximation to the standard deviation of the noise in that band.
We then set the threshold to some multiple of the standard deviation. Setting the threshold to §
times o, eliminates all noise, but will also eliminate the more quiet vocal sounds, such as termi-
nal sibilants. A threshold of 2.50,, gives a reasonable tradeoff between noise reduction and qual-
ity. 1.50,, was used in the movie ‘““Amadeus” to preserve the maximum performance nuance in
the dialog, giving only a slight but noticable reduction in the noise.

We should mention that the 256-band system does produce a curious artifact. It replaces the
noise with a swishing, semi-musical tonality. It is a consequence of the random nature of noise
that occaisional excursions above the threshold are probable from time to time. Since these excur-
sions are isolated and limited to a very narrow frequency band, the result is a distinct pitched
sound. With this many bands, there are numerous ‘“‘clouds” of these pitched sounds. In general,
we find it necessary to cover these artifacts with some other masking sound, either by adding a
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bit of the original noise back in, or making sure that there is music or sound eflects present to
mask the artifacts.

In the 256-band noise reducer, no combining of channels was done. The expansion algorithm was
applied to each and every channel. For the 4-band reducer, the spectrum was first broken into 16
equally-spaced bands, giving a frequency resolution of 1548 Hz (N = 31, 48000 Hz sampling
rate). A window was not used in this case since a great deal of overlap was desired. The upper
two bands involved the merging of a large number of bands. Table II shows the exact channel
gains that were used for each of the four bands.

CHANNEL FREQUENCY GAIN
1 2 3 4
0 0 85 .27 11 .07
1 1500 31 .38 19 a2
2 3000 .25 .33 .25 17
3 4500 A7 .26 35 .22
4 6000 10 18 43 .29
5 7500 .05 .15 45 35
6 9000 A1 45 44
7 10500 07 42 .51
8 12000 40 .60
9 13500 37 63
10 15000 35 .65
11 16500 34 66
12 18000 .33 .67
13 19500 33 .67

TABLE II - Channel coefficients for the 16 channels of each of the bands in the 4-band noise re-
ducer.

Note that in each channel, the sum of the gains is always unity. This assures that with equal -
band gains, the frequency response of the system is a constant (plus a delay). That is, there is no
“coloration” introduced by the system itself.

There are other reasons for chosing the amount of overlap shown in Table II. The problem is that
often the ‘‘crispness’” of speech seems to be contained in low-amplitude, high-frequency signals.
These signals can be of such low amplitude that they do not cause the gain of the expander to
rise, and consequently are lost. By including crossfeed from the low channels, we are assured that
while speech is present, even the high bands will be open, and consequently all the high transients
will be preserved. The high-end overlap between band 3 and band 4 shown in Table II is deli-
berate, so that when one or the other of the gains goes to zero, there will still be some
feedthrough. This prevents too abrupt a transition. We note in passing that the filters in the
Dolby A noise reduction system are similar to this, although the low band is at a much lower fre-
quency in the Dolby unit. By adjusting these channel gains, one can adjust exactly the tradeoff
between preserving the high frequency, low-amplitude information, and reducing the noise. With
only four bands, this is about as good as can be done. With 256 or more bands, we can do better,
since we can actually reduce the background noise that is between individual partials of the sig-
nal.

This kind of noise reduction is not new [9, 10, 11, 12, but our implementation (which will be dis- -
cussed next) is unique.



4. Implementation

Although we could just compute equation (1) directly, there are a number of ways to reduce the
computation while still preserving the desirable properties of the function. Portnoff [1] showed
that the fast Fourier transform may be used to compute (1), which reduces the operations consid-
erably. Furthermore, he showed that since the channel outputs are band-limited, they need not be
computed at every sample, but only every R samples. The limit of this is to use a Hamming or
Hanning window and set R = 1/2. This provides the minimum of computation using the method
of Portnofl. By use of polyphase filtering [12], this computation may be reduced even further, at
the expense of introducing a slight (arbitrarily small) ripple in the frequency response of the sys-
tem.

The only problem with this kind of implementation is that when the gain of a band is changing
rapidly, there can be a “‘modulation” introduced in the band that is not simply the gain changing.
It is the sum of the window functions, separated by R samples, multiplied by differing values of

gain, and summed. That is, there is an additional distortion due to the fact that we are comput- .

ing the transform every R samples while the gain is changing. Ideally, we should compute the
channel outputs every sample so that time-variant operations, like gain changes, can be made as
smooth and free of artifacts as possible. Our experimental results hint that for best results R can
be no greater than 2 without introducing artifacts.

With this in mind, we shall look at alternative realizations that provide this property.

4.1. FIR Filter Implementation

One can perform the analysis directly by filtering the input signals with a set of bandpass filters
with impulse responses given by equation (4). Recall also that we may sum these channels any
way we please without changing the key features of the system - i.e., that the system is an iden-
tity and that it is linear phase. One convenient form is to define 2 new, all-real channel output
y(n,m) as follows:

y(n,m)=X(n,m)+ X(n,N -m) 0<m<NJ2 (9)

This yields the following impulse response for each channel:

B(-n) m=0
2njnm
y(n,m)= 2h(*n)cos(—!—v————) 0<m<N/2 (10)
1)* h(-n) m=N/[2, N even

Consequently, the filters for the 4-band noise reducer above may be calculated directly from the
gains given in Table II. Since these filters are perfectly symmetric, only N /2 multiplications and
N additions are required for each band. In the 4-band noise reducer example, N = 31. The filter
coeflicients for each of the four bands are given in Table IIl. The output of each band may then
be calculated as follows:

EZ a, z(n -p) (11)

u(n)=’

-10 -

Note that this involves future values of z(n ). To make this filter fully realizable, we delay z (n)
by 15 samples, giving the following formula:

il )= § F— (12)

This is now fully realizable. Note that in Table III, summing the four filters together gives just a
single impulse (ignoring roundoff error in the coefficients). That is, the sum of a, is one and the
sum of the others is eflectively zero. This shows that the response of the sum of the filters is
exactly flat. Figure 1 shows the responses of the individual filters. The dotted line above shows
the response of the sum of the filters (note that the decibel scale makes it harder to see the sum-
mation property clearly).

Note what has happened here. We have used the model of time-variant Fourier analysis to
develop a model of linear-phase bandsplitting. We have actually realized the model through direct .
convolution. In this case, the Fourier transform is not used in the implementation. For a small
number of bands, it is almost always more efficient to use direct convolution, which has the
further advantage that the output of each band is produced at the original sampling rate (i.e.,
R =1). For larger numbers of bands, the efliciency gained by the use of the fast Fourier
transform cannot be ignored.

COEFF BAND

1 2 3 4

a, 0.077000  0.107667 0.358333  0.490333
a, 0.069551  0.085069  -0.009671  -0.144950
a, 0.050938  0.038429  -0.042735 -0.046632
ag 0.029869  0.005568  -0.035372  -0.000065
a, 0.014456  -0.000931  -0.014834 0.001309
ag 0.007727  0.001994  -0.005205 -0.004516
ag 0.007230  -0.001415 -0.001192  -0.004624
aq 0.008338  -0.007619 0.000098  -0.000817
ag 0.008116 -0.007674  -0.000076  -0.000366
ag 0.006735 -0.003638  -0.000799  -0.002298
ay 0.005931  -0.002737 -0.001671  -0.001523
ay 0.006596  -0.004661  -0.001464  -0.000472
37 0.007873  -0.004381  -0.002328  -0.001164
a3 0.008305 -0.002475 -0.003372  -0.002458
6y 0.007503  -0.003433  -0.002307  -0.001764
373 0.006497 -0.006430 -0.001404  0.001338

Table III - FIR filter coefficients for each of the bands of the 4-band noise reducer. The
coefficients a_; through a_ are just the same as 4, through a g, i.c., the filters are symmetric.

4.2. A Remark on Filter Design Theory

We note here that this gives us a design methodology for FIR filters where the object is to
separate the spectrum into distinct bands such that the sum of those bands is unity. These bands
may be of any general shape. For instance, we may produce two filters, one of which is a
bandpass filter and the other of which is a bandstop filter, such that together they include the
whole spectrum. By use of the weighting functions, we may make the cutoff rate arbitrarily sharp
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(at the expense, of course, of lengthening the filter). To see how this is done, let us first consider
just placing 2 window function on each analysis channel. This involves weighting the channel out-
puts with the D; as shown in equation (7). We may then group the weighted outputs any way
we please to produce a myriad of combinations of band separating filters. We show this schmati-
cally in Table IV.

BAND CHANNEL

m m+1 m+2 m+3 m+4 m+5
k D,

k+1 D, D,

k+2 1 D, D,

k+3 | D, 1 D, D,

k+4 | D, D, 1 D, D,

k+5 D, D, 1 D, D,
k+6 D, D, 1 D,
k+7 D, D, 1
k+8 D, D,
k+9 D,

Table IV - Weights for different analysis bands to increase sharpness of the bands. Any group of
bands may now be summed to produce wider bands with the same cutoff.

Any combination of rows in Table IV may be summed, such as from k +2 to k +4, to produce a

filter with wider passband. If we sum the rows from, say, k, to k;, we can express the result in
closed form as follows:

sin m%(k1 ~-ko+ l)]

y(n,m)= cos[m&%(ko+ kl)] {1+ f: Dy cos(k 9)} (13)

s [
LA F=1
sm(m2)

where 6 = 27n [N. The terms of this formula can be interpreted as the ideal low-pass filter,
shifted in frequency by heterodyning so that it is centered on the desired band (i.e., at
1/2 (ko + k1), and multiplied by the window function itself. This is simply the closed form
expression for the time-limited impulse response produced by the windowing method [13]. The
only revelation here is that by summing other groups of bands, an ensemble of filters can be pro-
duced that split up the spectrum and sum to unity.

4.3. Frequency Sampling Realization

For intermediate numbers of channels, another option is viable, and this is the frequency sampling
filter [4]. To derive this, we start with the band impulse response we desire, s(n). We can then
define the Z-transform of the impulse response as follows:

N-1

S(z7)= 3] s(n)z"" (14)

n =0
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We may also define the discrete Fourier transform of 8 (n ) and its inverse as follows:

§(m) = E;os(n)e_mT (15a)
1 N -1 }2,,_"_1
s(n) = § E=05(n)e N (15b)

If we substitute (15b) into (14), after some manipulation, we get the following:

) = x-S — (16
1-z7e

This derivation is taken from Rabiner and Gold [13]. If we then combine terms with index k with
terms with index N -k (except for k = 0 and, when N is even, except for k = N /2), assuming
that S(k)=S(N - k), which is a direct consequence of the linear phase property, we get the
following:

1 - b 1
S(z7Y) = —(1-2"")|5(0 s S -
()= Lo [so v s (172
% -1 1- cos(ZX%)z"
+2 Y, S(m) — , N even
m; =1 1-2 cos(27l'w)z‘l +2z72
S(z!) = ~(1- V)| s (0)— (17b)
N 1-21
"i‘.;—l 1- 005(27!%)2—1
+2 Y] S(m) , N odd
m =1 1-2 cos(27r%)z‘l + 272

It is hard to convey the importance of this formulation. The significance is that any FIR filter
may be realized as the sum of a number of resonators fed from a comb filter. This means that the
output of each of these resonators may be identified with X (n,m) as defined in equation (1)!
The impulse response of any one of the resonators is a pure cosine of N samples duration, which
will be recognized as the signal in equation (10)t.

t Note that unlike in equation (1), for this derivation, there is a hidden assumption that h (n) is limited in
time to N samples or less. That is, that A (n ) is zero for n < Qand for n > N . The condition in equa-
tion (3) is then trivially satisfied.
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To 2id numerical stability, it is convenient to replace z= by r z7! for r < 1 to bring the poles
of the resonators within the unit circle. Values of r from 0.9 to 0.9999 have been used suc-
cessfuly, but must be carefully chosen depending on the word length of the arithmetic being used
and the filter length N.

Once the bands are split up in this manner, they may be recombined using the Class III weighting
functions as described above to provide quite steep cutoff filters. With this implementation, it is
still true that when we sum all the bands together, the response is identically unity, except for a
delay. There is no frequency distortion at all. This is the implementation we are using for our
graphic equalizer and it seems to be perfectly well accepted for studio use for medium and high
frequencies. It is not as well adapted for lower frequencies (less than, say, 400 Hertz) because the
number of resonators required becomes prohibitive. It is more convenient to use the fast Fourier
transform in this case.

Note that the coupled form of the digital resonator [14] is ideal for this case. Figure 2 shows the
flow diagram of the filter, where C' = cos(2am [N) and § =sin(27m [N). If we let w(n)
represent a state variable of the filter, initialized to zero at the beginning of time, then we may
write the recursion equations for this filter as follows:

y(n)=1z(n)+ rcog(ZN%)y (n-1)- rsin(Zﬂ%)w(n -1) (18a)

w(n)= rsiu(ZW%)y (n -1)+ rcos(27r-1'%)w (n-1) (18b)

This form automatically realizes the zero of transmission and has superior low-frequency roundoff
properties, both for-the coeflicients and for noise amplification of the signal itself.

Since we are necessarily limited in space in this exposition, we will not resolve the conflict
between the definition of & (n) in equation (5a), which was centered on n =0, and the fact s(n)
in equation (14) is summed only from n'=0to n = N - 1. Since this is just a phase change, we
leave it as an exercise to the interested reader to follow the details through.

5. Summa-ry and Conclusion

In this paper, we have used short-term time-variant Fourier analysis as a vehicle to develop a
family of methods of separating the spectrum into a number of bands such that the sum of these
bands is exactly unity plus a constant delay. We have mentioned methods of realizing this process
using the fast Fourier transform, but have also derived here additional realizations using either
FIR filtering or IIR filtering by frequency sampling filters, both utilizing purely real arithmetic.
Any of these realizations can be used where bandsplitting is required.

Two applications have been mentioned which use this theory as a basis. These were graphic
equalization and noise reduction. For graphic equalization, all that is required is to multiply the
output of each band by the desired gain before summing the bands. For noise reduction, a
dynamic-range expander is placed after each band filter which attenuates the signal at low levels.
At high levels, the signal is passed unchanged. We noted that for best results, 256 or more bands
- should be used so that noise between the partials of the signal may be attenuated. A specific
example of a 4-band noise reducer was given that may be used like conventional noise gates or
other expanders.
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All the techniques described above have now been used in major motion picture production
(though not without some difficulty at times due to the experimental nature of the research) and
are now available for wider application in the audio industry in general.
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Figure 1 - Frequency responses of the four filters in the 4-band noise reducer. The dotted line
above shows the (linear algebraic) sum of the responses of the four filters. It is, of course, perfectly
flat. Note the deliberate overlap of the bands, especially in the high shelving region.
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Figure 2 - Signal flow graph of the coupled form of the digital resonator. This is a very numeri-
caly stable form of the second-order digital filter with the additional property that a zero of
transmission is created that is exactly what is needed to form frequency-sampling filters.



